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Abstract
In the interdependent values (IDV) model introduced by Milgrom and Weber [1982], agents have private

signals that capture their information about different social alternatives, and the valuation of every agent is
a function of all agent signals. While interdependence has been mainly studied for auctions, it is extremely
relevant for a large variety of social choice settings, including the canonical and practically important setting
of public projects. The IDV model is much more realistic but also very challenging relative to the standard
independent private values model. Welfare guarantees for IDV have been achieved mainly through two
alternative conditions known as single-crossing and submodularity over signals (SOS). In either case, the
existing theory falls short of solving the public projects setting.

Our contribution is twofold: (i) We give a useful characterization of truthfulness for IDV public projects,
parallel to the known characterization for independent private values, and identify the domain frontier for
which this characterization applies; (ii) Using this characterization, we provide possibility and impossibility
results for welfare approximation in public projects with SOS valuations. Our main impossibility result is
that, in contrast to auctions, no universally truthful mechanism performs better for public projects with SOS
valuations than choosing a project at random. Our main positive result applies to excludable public projects
with SOS, for which we establish a constant factor approximation similar to auctions. Our results suggest that
exclusion may be a key tool for achieving welfare guarantees in the IDV model.

1 Introduction

Public projects. In the combinatorial public projects problem (CPPP), there are m resources that can
collectively serve a community (e.g., a library, a bridge, or a train station). The community is composed
of n agents with heterogeneous preferences over these resources. Given the agent preferences, a set of at
most k ≤ m resources should be chosen, with the goal of maximizing the social welfare (i.e., the sum of
agent values for the chosen resources). CPPP is a well studied problem in theoretical computer science, and
has been an important domain for showing strong separation results between truthful and computationally
efficient approximations [7, 49, 34, 35, 20, 21]. Moreover, it captures a plethora of practical problems like
constructing network overlays, deciding on new transportation hubs/links, and the decision-making of academic
hiring committees. In fact, we observe that CPPP essentially captures any social choice setting (computational
considerations aside). The practical motivation to study public projects is more relevant than ever given the
current trend towards allowing communities more influence over public policies and public decision-making that
affects them [e.g., 5].

The interdependent values (IDV) model. An underlying assumption in previous works on CPPP and the
vast majority of studies on mechanism design and social choice is that agents have independent private values
(IPV) for the different outcomes. And yet, in real-life scenarios, this is rarely the case. Indeed, in many settings,
the agent values are highly interdependent. For example, in the CPPP setting of academic hiring committees,
a committee member’s evaluation of a candidate is highly dependent on another member’s information about
the candidate – since they may be better-informed about the impact of the candidate’s work while yet another
may be more informed about the pedagogical skills of the candidate. Another typical example is an auction for
modern artwork, where an agent’s value depends on others’ assessment of the work’s merit – both since others
may be better-informed on modern art, and since their opinions may determine the resale value of the work.
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The work of Milgrom and Weber [37] builds upon Wilson [51] to introduce the interdependent values (IDV)
model, which captures such interdependencies of values among the agents. The 2020 Nobel prize in economics
was awarded to Milgrom and Wilson for the theory of IDV (as well as for the practice of auction design) [42].
In the IDV model, every agent i has a privately-known signal si that captures the agent’s information about
the different outcomes, in addition to a publicly-known valuation function that maps the signals of all n agents
to i’s values for the outcomes. The importance of this model is in providing a much more accurate depiction
of valuations in practice – for example, it sheds light on well-known phenomena like the winner’s curse, which
cannot be explained under IPV [e.g., 10].

The following is an example of an IDV CPPP instance:

Example 1.1. (Running example) There are n = 2 agents and a pool of m = 3 potential public projects,
including building a new bridge, opening a library, and building a train station. The goal is, for a given k ≤ m,
to choose which k projects to realize in order to maximize social welfare. Every agent i has a privately-known
signal si ∈ R+ capturing their private information about the projects. The value vij of agent i for project j is an
increasing function of all signals s1, . . . , sn. Consider the following values:

• Agent 1’s values: v11 = 3s2, v12 = s1
2 + s2, v13 = 2s1.

• Agent 2’s values: v21 = s2, v22 = s1 +
s2
2 , v23 = 0.

Figure 1 in Section 3 depicts the values of agent 1 for the three projects as a function of her signal s1, when agent
2’s signal is fixed to s2 = 1.

IDV and welfare maximization. The IDV model also raises fascinating theoretical challenges: An important
theme of algorithmic game theory is the interplay between truthful implementability and the approximation
factor achievable for a certain optimization problem. In IPV this has been extensively studied for the objective
of minimizing makespan [41], with a recent breakthrough showing a large gap between non-strategic vs. truthful
approximation (even with no computational limitations) [11]. For arguably the most natural objective – welfare
maximization – there is no gap in IPV; that is, the optimal welfare can always be implementable in a truthful
mechanism (computational considerations aside). This result is due to the celebrated VCG mechanism, which
applies beyond auction settings to general social choice. In IDV, however, such a gap exists even for welfare in
auction settings. Indeed, in the absence of additional assumptions, even in a single-item auction the optimal
welfare cannot always be achieved truthfully.

As a result, the economics literature has studied conditions under which welfare maximizing auction design is
possible in the IDV model. For single-dimensional settings, if valuations satisfy a condition called single-crossing,
one can obtain the maximum welfare in an (ex-post) truthful mechanism [2]. Moreover, this is also a necessary
condition for obtaining maximum welfare truthfully. Motivated by the fact that many real-life scenarios do not
satisfy single-crossing, recent work in computer science identified conditions that allow for approximately optimal
welfare in the absence of single-crossing. In particular, Eden et al. [23] achieve a constant-factor approximation
for valuations satisfying submodularity over signals (SOS). Under separability, this result extends even to multi-
dimensional settings. For additional related work see Appendix A. For more general social choice settings beyond
auction design the state of affairs of IDV is less clear.

The purpose of this paper is to initiate the study of truthful welfare maximization for public projects under
interdependent values (IDV). As it turns out, the combinatorial public projects setting imposes new challenges that
do not arise in combinatorial auctions. Our goal is to both identify necessary and sufficient conditions to obtain
optimal welfare truthfully, and to provide approximation results for settings that go beyond these conditions.

1.1 Our Results Inspired by the study of welfare maximization for auctions with IDV, for public projects
we explore the two known conditions under which positive results are attainable for auctions: single-crossing
valuations, and SOS valuations. In both cases, the existing theory falls short of solving the public projects
setting. Our contribution is twofold: (i) We give useful characterizations of truthful mechanisms for public
projects in IDV settings (Section 3, complemented by Sections 5 and 6); (ii) We use these to provide possibility
and impossibility results for welfare approximation in such settings (Section 4 – this stand-alone section can be
referred to directly by the interested reader). Beyond the concrete results, our study reveals interesting connections
between properties that have been previously studied separately in the truthful implementability literature (see
Figure 2 for an elaborate demonstration of these relations).
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Single-crossing based characterization for auto-linear valuations. It is well-known that in single-
dimensional settings, the valuations need to satisfy a condition called single-crossing to obtain optimal welfare
truthfully [e.g. 36, 2, 13, 29]. We generalize single crossing beyond both single-dimensional settings and the social
welfare objective. In Section 3 we develop a useful characterization of truthful implementability for auto-linear
valuations, where valuation vi is linear as a function of si for each agent i. We first define a necessary and
sufficient condition for truthful welfare maximization beyond single-dimensional settings, termed strong single-
crossing. This condition shows that an alignment of interests between the agent and the social planner depends
on an alignment of the slopes between an agent’s valuation and the social welfare of different outcomes (for
geometric intuition, see Figure 1 and the corresponding discussion in Section 3.1). Further, we go beyond welfare
maximization to any social choice function f , by generalizing strong single-crossing to f -single-crossing as a
characterization of truthful implementability.

Theorem: (See Proposition 3.2) For any auto-linear valuation profile v, a social choice function f is (ex-post
IC-IR) implementable if and only if v satisfies f -single-crossing.

While this theorem suffices to prove our main impossibility result in Section 4, we later push this theorem to its
limits by identifying the class of valuations for which this useful single-crossing based characterization holds.

Approximate welfare for public projects. By our characterization results in Section 3, for any CPPP
instance with auto-linear valuations, if strong single-crossing is satisfied then the optimal welfare can be obtained
truthfully. However, strong single-crossing is an extremely strong condition that rarely holds in practice. To
study settings beyond this condition, we naturally turn to approximation results. This is our focus in Section 4,
which provides approximation guarantees in the absence of strong single-crossing.

Our first observation is that welfare maximization in auctions with k identical items can be reduced to welfare
maximization in public projects (choosing k projects). With this reduction in hand, known impossibility results in
auction design (see [22, 23]) immediately imply the following inapproximability results in public projects, even in
cases where a single project should be chosen. First, no welfare approximation guarantee can be provided by any
deterministic truthful mechanism. Second, in the absence of additional constraints, no randomized mechanism
can give any non-trivial (i.e., better than 1/m) welfare approximation.

Eden et al. [23] recently proposed to circumvent these impossibilities in auction design by considering
valuations that satisfy a natural property called submodularity over signals (SOS). Roughly speaking, these are
valuations where the increase in one’s value due to an increase in her signal is smaller when other signals are higher.
SOS is a natural condition that holds in essentially all examples in the IDV literature. Eden et al. [23] showed that
if valuations are separable1 SOS, then one can obtain 1/4-approximation even in general combinatorial auctions.

Does SOS come to our rescue in public projects as well? Unfortunately, SOS does not suffice for providing
welfare guarantees in CPPP. Our main impossibility result is that even under separable SOS (linear) valuations,
no universally truthful mechanism can perform better than allocating a project at random. The proof utilizes our
characterization of truthful implementability.

Theorem: (see Theorem 4.1) There exists a public projects instance with separable SOS valuations for which
no universally truthful mechanism can give better than 1/m-approximation to welfare.

What is the source of the difference between auctions and public projects? A key component in the mechanism
for auctions is a random partitioning of the agents into two groups of agents: those who are included and those
who are excluded. The challenge in public projects is that once a project is in place, agents cannot be excluded
from using it. However, an interesting subtype of public projects is the class of excludable public projects, often
termed club goods in the economics literature [6]. Examples of club goods include libraries, cinemas, swimming
pools, or any public facility that benefits a restricted group of members.

Our main positive result is that the truthful mechanism tailored for auctions in the IDV setting [23] can be
adapted to excludable public projects. This result greatly extends the mechanism’s applicability.

Theorem: (see Theorem 4.2) There is a universally truthful mechanism that gives 1/4-approximation to welfare
for excludable public projects with separable SOS valuations.

1A valuation function vi : A× S → R+ is separable if there exist functions hi : A× Si → R+ and gi : A× S−i → R+ such that
vi(a; s) = hi(a; si) + gi(a; s−i).
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A conceptual takeaway from our results is that exclusion is an important tool for welfare approximation
guarantees in IDV settings. In particular, our strong impossibility results may suggest that the strong notion of
exclusion used in auction settings, where some agents are totally excluded, is inevitable.

General characterization of IDV implementability. In Section 5 we provide a complete picture of
our single-crossing based characterization. We identify “decomposability” as the crucial property of auto-linear
valuations which facilitates the f -single-crossing characterization. In turn, we define the class of decomposable
valuations and show that f -single-crossing is necessary and sufficient for truthful implementability for such
valuations (Theorem 5.1). Moreover, we find that this class forms a frontier for which our useful characterization
of IDV implementability is possible (Corollary 5.3). We establish this through a new equivalence between
single-crossing based characterizations (like f -single-crossing) and monotonicity-based characterizations (like
the well-studied W-Mon condition, see e.g. [32]). Beyond decomposable valuations, IDV implementability is
more complex. We further study it in Section 6 and present a complete picture of the current landscape of
implementability in Figure 2.

2 Preliminaries

In Section 2.1 we introduce notation for classic social choice settings. In Section 2.2 we define interdependent
values and present our main setting of interest – public projects with interdependence. We concisely summarize
what’s known in the literature about truthful implementation for interdependence in Section 2.3 (see Appendix B.1
for truthful implementation without interdependence).

Notation. For a vector x = (x1, . . . , xn), we use the standard notation of x−i to denote the same vector excluding
xi, and (x′

i,x−i) to denote the profile obtained by replacing xi with x′
i.

2.1 Independent Private Values (IPV) Social choice settings. A social choice setting (n,V,A) consists
of n agents {1, . . . , n}, a domain of valuations V = V1 × . . . × Vn, and µ alternatives A (A is also referred to
as the outcome space). In a particular instance, every agent i has a valuation function vi ∈ Vi, where function
vi : A → R+ specifies her value for every alternative (we sometimes also use a vector notation vi ∈ Rµ). A social
choice function f : V → A maps a valuation profile to one of the alternatives, possibly randomized. We denote
by fa(v) the probability assigned to alternative a ∈ A. A finitely-valued f has finitely-many distinct outcomes,
that is, for every i ∈ [n] and v−i, |{f(vi,v−i) : vi ∈ Vi}| < ∞. The welfare of an alternative is the sum of the
agents’ values for it.

Single-dimensional social choice settings. An important distinction is between settings with single- vs. multi-
dimensional domains. In the former, the space Vi is single-dimensional for every i, i.e., there is a single real
parameter that directly determines the valuation function vi. Such domains are well-known to be significantly
simpler for mechanism design than multi-dimensional ones.

Formally, a single-dimensional setting (n,V,A) is a social choice setting in which the alternatives are subsets
of agents, i.e., A ⊆ 2[n]. It is required that A be downward-closed (if W ∈ A then for every W ′ ⊆ W , W ′ ∈ A).
An outcome W ∈ A corresponds to a set of “winning” agents. For example, in a single-item auction, A = [n];
in a multi-unit auction with n units, A = 2[n]. The valuations in such settings are simple: slightly overloading
notation, every agent i has a single value vi for winning, such that vi(W ) = vi if i ∈ W , and vi(W ) = 0 otherwise.
We use fi(v) to denote the probability that agent i is a winner.

Mechanisms. A (direct revelation) mechanism solicits value reports b = (b1, . . . , bn) from the agents. Its
description is given by a pair (f, p), where f is a social choice function, and p a collection of payment rules
p(b) = {p1(b), . . . , pn(b)}. Payment rule pi : V → R maps the bids b to the expected payment of agent i. For
every i, agent i’s expected quasi-linear utility is given by

∑
a∈A fa(b)vi(a) − pi(b). We sometimes use an inner

product ⟨vi, f(b)⟩ to denote
∑

a∈A fa(b)vi(a).

Truthfulness and implementability. Truthfulness is without loss of generality by the revelation principle [40].
For standard IPV settings, we focus on the design of dominant-strategy incentive-compatible (IC) and individually
rational (IR) mechanisms: A deterministic mechanism is considered truthful if it is in every agent’s best interest
to participate and report her true value regardless of others’ bids (bidding truthfully is a dominant-strategy
equilibrium of the mechanism). Formally, a deterministic mechanism is dominant-strategy IC-IR if for every
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valuation profile v ∈ V, agent i ∈ [n] and bid bi ∈ Vi,∑
a∈A

fa(v)vi(a)− pi(v) ≥ max
{ ∑

a∈A
fa(bi,v−i)vi(a)− pi(bi,v−i), 0

}
.

For randomized mechanisms there are two levels of truthfulness: the mechanism can be truthful for every
realization of its internal randomness, in which case we say it is universally truthful ; a weaker requirement is
that the mechanism is truthful in expectation where the expectation is taken over its random coins. Unless stated
otherwise, by “truthful” we refer to the former requirement of universal truthfulness.

Definition 2.1. Consider a social choice setting (n,V,A). A social choice function f is called implementable if
there exists a payment rule p such that (f, p) is truthful.

2.2 Interdependent Values (IDV) Our focus in this work is on the interdependent values (IDV) model of
Milgrom and Weber [37]. In the standard independent private values (IPV) model, the privately-known type of
each agent i is her valuation vi. In IDV, however, the privately-known type is her signal si, which captures her
information on the social choice alternatives.2 Formally, let Si be a bounded set of possible signals for every agent
i ∈ [n]. We denote by s = (s1, s2, . . . , sn) a signal profile, and by S = ×iSi the signal space of the agents. The
values of the agents are interdependent in the following sense: they depend not only on the chosen alternative
a ∈ A, but also on the information (signals) of all the agents. That is, for every i, the valuation function of agent
i is vi : A × S → R+ (we sometimes also denote vi(·; s) as vi(s) ∈ Rµ where the alternative a is clear from the
context). We assume (as is standard) that for every pair i, i′ ∈ [n], valuation vi is monotone non-decreasing in
signal si′ . The collection of valuation functions v = {vi}i is publicly known.

Social choice with IDV. Classic social choice settings can be adapted to IDV with only slight changes (mainly,
s replacing v): A social choice setting with IDV (n,S,A,v) consists of n agents, a signal space S, alternatives A,
and a profile of n valuation functions vi : A×S → R+. We refer to such settings as interdependent values (IDV)
settings or as social choice settings with IDV. A social choice function f : S → A maps each signal profile s to a
(possibly random) social alternative. For any distribution over outcomes δ ∈ ∆(A), we use vi(δ; s), ⟨vi(s), δ⟩, and∑

a∈A δ(a)vi(a; s) interchangeably to denote agent i’s expected value. A single-dimensional setting with IDV is
similarly defined. For simplicity, in single-dimensional settings we often omit the alternative from the valuation
function notation, and let vi : S → R+ be such that vi(a; s) = vi(s) if i ∈ a (agent i wins), and vi(a; s) = 0
otherwise.

Mechanisms and truthfulness with IDV. A mechanism for IDV solicits signal rather than value reports
b = (b1, . . . , bn) from the agents. For every i, agent i’s expected quasi-linear utility is given by

∑
a∈A fa(b)vi(a; s)−

pi(b). In interdependent settings, it is well-known that we cannot hope to design mechanisms where truth-telling
is a dominant strategy, therefore incentive compatibility and individual rationality are defined ex-post. I.e., a
mechanism for IDV is considered truthful if it is in every bidder’s best interest to participate and report her
true signal given that all other agents bid truthfully (i.e., bidding truthfully is an ex-post equilibrium of the
mechanism). Formally, a deterministic mechanism is ex-post IC-IR if for every signal profile s ∈ S, agent i ∈ [n]
and bid bi ∈ Si, ∑

a∈A
fa(s)vi(a; s)− pi(s) ≥ max

{ ∑
a∈A

fa(bi, s−i)vi(a; s)− pi(bi, s−i), 0
}
,

where fa(s) indicates whether alternative a is chosen given s. As above, a randomized mechanism is universally
truthful if it consists of a distribution over truthful deterministic mechanisms.

Public projects with IDV. A classic (IPV) combinatorial public projects setting (n,V,m, k) is a multi-
dimensional social choice setting in which there are n agents, m projects {1, . . . ,m}, and a number k ≤ m,
k ∈ N. The alternatives are all combinations of up to k projects, i.e., A = {T ⊆ [m] | |T | ≤ k}. A
combinatorial public projects setting with interdependent values is described by (n,S,v,m, k), and the value

2Note that this makes the types in our model – despite its possible combinatorial nature – single-parameter. We emphasize this
does not mean that interdependent settings are always single-dimensional, rather that the dimensionality of the type is distinct from

that of the setting. Recall, in Example 1.1, despite the fact that the signals are single-dimensional, the value space of every agent is
multi-dimensional.
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of agent i for project set T is vi(T, s). In the combinatorial public projects problem (CPPP), the input is a public
projects setting and the objective is to find a subset T ∗ of up to k projects that maximizes the social welfare:
T ∗ ∈ argmaxT∈A

∑n
i=1 vi(T, s).

2.3 Implementability with IDV: What’s Known In Appendix B.1 we include several known key results
on implementability for IPV. For IDV, implementability is more subtle, as we now detail.

Single-dimensional settings. For single-dimensional settings with IDV, monotonicity characterizes imple-
mentable social choice functions (similarly to IPV). Recall that fi(s) denotes the probability that agent i wins.
Then:

Theorem 2.1. (Implementability with IDV: Single-dimensional (e.g. [46])) For every single-
dimensional IDV setting, a social choice function f is (ex post IC-IR) implementable if and only if for
every i, s−i it holds that fi(si, s−i) is monotone non-decreasing in signal si.

Unlike IPV, it turns out that even to implement a social choice function like welfare maximization, with IDV
an additional single-crossing condition is needed in order to achieve monotonicity and hence truthfulness. Many
definitions for such a condition appear in the literature, the following is adapted from [46]:

Definition 2.2. (Single-crossing condition) Given a single-dimensional setting with IDV, we say that the

valuation profile v satisfies single-crossing if for all agents i, j and every s ∈ S, ∂vi

∂si
(s) ≥ ∂vj

∂si
(s).

That is, agent i’s signal influences her own valuation more than the valuation of any other agent. This definition or
slight variations of it in effect characterize truthfulness, as for every single-dimensional setting with IDV, welfare
maximization is implementable if and only if the valuation profile v satisfies single-crossing.

3 A Useful Characterization of IDV Implementability: The Basics

The focus of this section is an important subclass of interdependent valuations which we refer to as auto-linear
valuations. A valuation vi is auto-linear if for every a and s−i, vi(a; si, s−i) is linear as a function of si. This class
encompasses well-studied special cases like the resale model [40, 46, 24] or Klemperer’s wallet game [31]. We study
necessary and sufficient conditions for truthful implementation of a social choice function for IDV settings with
auto-linear valuations. In Section 3.1 we define a strong single-crossing property that is necessary and sufficient
for truthful welfare maximization, and in Section 3.2 we generalize this to a necessary and sufficient condition for
implementability of any social choice function f . Refer to Appendix C for missing details and proofs.

While auto-linearity is a strong assumption on the valuation class, it is already rich enough to admit strong
impossibility results in the IDV public projects settings building upon the characterization in this section
(see Section 4). Moreover, it captures the fundamental properties needed for a useful characterization of
implementability. In Section 5 we show that all the results in this section continue to hold for a more general class
of valuations, namely decomposable valuations. In fact, we show that it is the most general class of valuations for
which the useful characterization is possible.

3.1 Welfare Maximization In this section we study truthful welfare maximization and provide intuition for
our generalization of single-crossing towards a characterization of truthfulness. We define a condition similar
to single-crossing that is necessary and sufficient for truthful welfare maximization beyond single-dimensional
settings. Our single-crossing condition, termed strong single-crossing, is based on the comparison of the slopes of
an agent’s valuation and the slopes of the social welfare for different outcomes. For instance, in Example 1.1, the
slopes of agent 1’s valuations with respect to s1 are 0, 1

2 , and 2 for the projects 1, 2, and 3 respectively, and the
slopes of the social welfare with respect to s1 are 0, 3

2 , and 2 for the projects 1, 2, and 3 respectively. Notice that,
when considering the projects in increasing order with respect to either the slopes of the valuation or the slopes
of the welfare we obtain the same ordering, i.e., 1 < 2 < 3. This consistency in the order of slopes is the essence
of our single-crossing condition (when it holds for each agent i with respect to signal si).

Definition 3.1. (Strong single-crossing) Given any IDV social choice setting (n,S,A,v) with auto-linear
valuations v. Let Wel(a; s) =

∑
i vi(a; s) denote the welfare of allocation a ∈ A given signal profile s. We say
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vi(j; ·, s−i)

si

j1

j2

j3

f(·, s−i) = j1 f(·, s−i) = j2 f(·, s−i) = j3

vi(j; ·, s−i)− pij

si

j1

j2

j3

f(·, s−i) = j1 f(·, s−i) = j2 f(·, s−i) = j3

Figure 1: Truthful prices in an auto-linear setting with three projects where f -single-crossing holds.

that v satisfies strong single-crossing, if for each i ∈ [n] and s−i ∈ S−i

∂Wel

∂si
(a1; s) ≤

∂Wel

∂si
(a2; s) ≤ . . . ≤ ∂Wel

∂si
(ar; s)

implies
∂vi
∂si

(a1; s) ≤
∂vi
∂si

(a2; s) ≤ . . . ≤ ∂vi
∂si

(ar; s),

where a1, . . . , ar denote all the outcomes such that aj ∈ argmaxa∈A Wel(a; z, s−i) for some z ∈ Si.

A visual illustration of strong single-crossing. The reason this condition implies implementability can be
illustrated visually. Recall Example 1.1, where there are n = 2 agents and m = 3 potential projects with the
following values:

• Agent 1’s values: v11 = 3s2, v12 = s1
2 + s2, v13 = 2s1.

• Agent 2’s values: v21 = s2, v22 = s1 +
s2
2 , v23 = 0.

The plot in Figure 1 (left) depicts this for i = 1 and s2 = 1 (jℓ = ℓ for ℓ ∈ [3]), where f is welfare maximization.
The blue region (s1 ∈ [0, 5/3]) is when project 1 maximizes welfare; the red region (s1 ∈ [5/3, 3]) is when project
2 maximizes welfare; and the green region (s1 ≥ 3) is when project 3 maximizes welfare. Notice that if we order
the projects by the slope of the welfare with respect to s1 we get back the order of the projects that maximize
welfare as s1 increases. Moreover, the same order of slopes would be obtained when considering the valuation
of agent 1 for each of the projects. The fact that the slopes are aligned allows us to define prices such that the
utility maximizing project is also the welfare maximizing project for each signal s1. This is illustrated in the plot
on the right, where the arrows depict the shift in the values induced by the prices.

In fact, strong single-crossing is also necessary to obtain a truthful mechanism that achieves the optimal social
welfare. See Appendix C and Figure 3 for a visual illustration. The following characterization of welfare-efficient
mechanisms for IDV settings with auto-linear valuations follows.
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Proposition 3.1. For any IDV social choice setting (n,S,A,v) with auto-linear valuations v, there is an ex post
IC-IR mechanism that achieves optimal social welfare if and only if v satisfies the strong single-crossing condition
and the following payment identity holds for every i and s−i:

pi(xj , s−i) = pi(xj−1, s−i) + vi(aj ;xj)− vi(aj−1;xj)

pi(si, s−i) = pi(xj , s−i) for all si ∈ [xj , xj+1)

pi(0, s−i) ≤ vi(0, s−i)

where x1 = 0, x2, · · · , xr ∈ Si are the signals such that f(s) = aj for all si ∈ [xj , xj+1), and a1, · · · , ar as defined
in Definition 3.1.

3.2 Beyond Welfare Maximization The simple demonstration above also illustrates the fact that the strong
single-crossing condition need not be limited to welfare maximization exclusively. To find the correct prices, it is
sufficient to consider the regions at which each project gets allocated. The fact that the project was chosen by
maximizing welfare had been incidental to our process. This allows us to define the f -single-crossing condition,
which characterizes implementablity for any social choice function f over auto-linear valuations.3

Definition 3.2. (f-single-crossing) Given any IDV social choice setting (n,S,A,v) with auto-linear valua-
tions v, and a (possibly randomized) social choice function f . We say that v satisfies f -single-crossing, if for
each i ∈ [n] and s−i ∈ S−i, and any signals si < s′i

f(si, s−i) = a1, f(s
′
i, s−i) = a2 implies

∂vi
∂si

(a1; s) ≤
∂vi
∂si

(a2; s).

In Proposition 3.2 we show that this simple and workable condition is indeed necessary and sufficient for
truthful implementability. For example, this condition is useful for uncovering a necessary property of truthful
mechanisms which approximately optimize welfare – see Section 4.

Proposition 3.2. For any IDV social choice setting (n,S,A,v) with auto-linear valuations v, a social choice
function f is ex-post truthfully implementable, if and only if v satisfies f -single-crossing.

Furthermore, we show that f -single-crossing is closely related to the well studied notion of weak monotonicity
in the IPV literature – see Section 5.2 for more details.

4 Approximate Welfare Maximization in Public Projects

In this section we focus on the public projects setting with IDV valuations and without strong single-crossing.
Recall that, for auto-linear valuations, strong single-crossing is a necessary (and sufficient) condition to achieve
the optimal social welfare truthfully. However, this condition is strong and may not be satisfied in practice. It is
thus natural to study what approximation guarantees can be provided in the absence of strong single-crossing.

Overview of section results. In an IDV public projects setting, we are given n agents and m projects,
and we want to realize up to k projects. We observe in Section 4.1 that even with k = 1, the public projects
setting captures the auctions setting (and in fact, computation aside, it captures any social choice setting). This
connection enables us to recover known impossibility results from the auctions setting to the public projects setting.
In particular, we get that the SOS condition on valuations is necessary for good social welfare approximation
guarantees. However, unlike auctions, the SOS condition turns out to be insufficient in the public projects setting:
we use our characterization from Section 3 to show in Section 4.2 that even under separable SOS valuations, there
are instances that do not admit any non-trivial welfare guarantees truthfully (see Theorem 4.1).

To circumvent this impossibility result, in Section 4.3 we shift attention to a natural variant of public goods,
namely excludable public projects (a.k.a., club goods). We show that with the addition of agent exclusion, the
truthful mechanism of Eden et al. [23] for IDV auctions can be easily adapated to the excludable public projects
setting, obtaining a 4-approximation to the optimal social welfare; see Theorem 4.2.

3This also holds for decomposable valuations. See Section 5.1.
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Section preliminaries. We revisit well-studied conditions on valuation functions in the IDV setting. In the
IDV auction setting, these have been useful for obtaining approximately-optimal welfare truthfully, even when
single-crossing does not hold. The definitions below are adapted from [23].

Definition 4.1. (Submodular-over-signals valuations) A valuation function v : A × S → R+ satisfies
submodularity over signals (SOS) if for all a ∈ A, s, s′ ∈ S and i ∈ [n], where s′ is coordinate wise larger or
equal to s it holds that

v(a; s′i, s−i)− v(a; s) ≥ v(a; s′)− v(a; si, s
′
−i).

Definition 4.2. (Separable SOS valuations) For each agent i, a valuation function vi : A × S → R+ is
separable SOS if there exist functions g−i : A× S−i → R+ and hi : A× Si → R+ such that

vi(a; s) = hi(a; si) + g−i(a; s−i),

where hi(·) and g−i(·) are both weakly increasing and g−i(·) is an SOS function.

4.1 Reducing Auctions to Public Projects and Impossibility Implications In this section we show
that known impossibility results from IDV single-item auctions carry over to IDV public projects via a simple
reduction. The key idea is that given any social choice setting with IDV valuations (n,S,A,v), we can consider
a public project setting where each alternative a ∈ A has a corresponding project (that is, we have n agents,
m = |A| projects, and wish to choose a single project/alternative).

A single-item auction instance is given by (n,S,A,v), where a single item needs to be allocated to one of n
agents, A = [n] is the set of possible outcomes (outcome i denotes an allocation to agent i), every agent i has
a valuation vi : S → R+, where the value of agent i for winning the item under signal profile s is vi(s), and 0
otherwise (i.e., if i is not the winner).

Given a single-item auction instance (n,S,A,v), we define a public projects instance (n,S,v′, n, 1) with
n agents, m = n projects and k = 1 (i.e., a single project should be chosen), where the valuation function
v′i : [n]× S → R+ is defined as

v′i(j; s) =

{
vi(s) if j = i,

0 otherwise

That is, in the reduced instance, for every j = 1, . . . , n, we have a project j associated with the outcome “j
wins the item”, and only agent j has non-zero value for this project. Thus, the social welfare of allocating a
project j (possibly, at random) in the public projects setting equals the social welfare of allocating the item to
bidder j in the corresponding auction setting, and the reduction is approximation preserving. As a corollary, the
impossibility results for auction settings from [22] carry over to public project settings.

Known lower bounds for single-item auctions. The following example shows that in the absence of single-
crossing, no deterministic mechanism can obtain any approximation guarantee for the optimal social welfare, even
under SOS valuations.

Example 4.1. (No bound for deterministic mechanisms [22]) Consider a single-item auction with two
agents. Only agent 1 has a signal, denoted by s1 ∈ {0, 1}. The valuations of the agents for winning the item are

v1(s1) = 1 + s1, v2(s1) = H · s1,

where H is arbitrarily large. If the item is not allocated to agent 1 when s1 = 0, then the approximation ratio is
infinite. On the other hand, if the item is allocated to agent 1 when s1 = 0, then by monotonicity, agent 1 must
also be allocated at s1 = 1, leading to a 2/H fraction of the maximal social welfare.

One can easily verify that in Example 4.1, no randomized mechanism can give better than 1/2-approximation.
Beyond SOS valuations, no non-trivial approximation can be obtained by any truthful mechanism, as the

next example shows.
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Example 4.2. (Lower bound of n for randomized mechanisms without SOS [22]) Consider a single-
item auction with n agents. For every agent i, si ∈ {0, 1}, and the valuation of agent i for winning the item
is

vi(s) =
∏
j ̸=i

sj + ε · si.

That is, agent i’s value for the item is non-negligible if and only if the signals s−i are (1, . . . , 1). When all signals
are 1, let i be the agent who is allocated the item with probability at most 1/n (there must be such an agent in any
feasible outcome). By monotonicity, at s′ = (⃗1−i, 0i) the probability that agent i is allocated the item is also at
most 1/n. Therefore, the welfare obtained is at most 1

n + ϵ · (n− 1) at signal profile s′, while the optimal welfare
is 1, thus giving a factor-n gap when ε → 0.

4.2 SOS to the Rescue? In this section we show that public projects with interdependent values impose a
unique challenge that does not arise in auction settings. In combinatorial auctions with interdependent values,
the SOS property (combined with separability) comes to our rescue; in particular, there exists a universally
truthful mechanism that gives 1/4-approximation to the optimal welfare for any instance with separable SOS
valuations [23]. In stark contrast, the following theorem shows that in public projects, no universally truthful
mechanism guarantees more than a 1/m-approximation, even for separable SOS valuations.

Theorem 4.1. There exist linear valuation functions for which no ex-post IC-IR mechanism can perform better
than allocating a project at random, i.e., we cannot get better than a 1/m-approximation to the optimal social
welfare.

Proof. Consider the following public projects instance, inspired by Example 4.1.

Example 4.3. Consider n agents, m = n+1 projects labelled {0, 1, 2, . . . , n}, and each agent i ∈ [n] has a private
signal si ∈ {0, 1} (using the convention that sn+1 = s1). For any agent i ∈ [n] and signals s, let vi(j; s) denote
the value of agent i for project j under signals s. We define

vi(j; s) =


εsi + 1 for j = 0,
ε

i+1si +Hi · si+1 for j = i,
ε

j+1si otherwise

where H is an arbitrarily large number.

Recall that for a mechanism (f, p) to be an α-approximation (in the worst case) the (expected) welfare at
each s ∈ {0, 1}n needs to be at least an α factor of the optimal social welfare at s. For s = (0, 0, . . . , 0), project 0
is optimal and the only outcome with positive welfare, hence any α-approximation should allocate project 0 with
probability at least α. For s = (1, 1, . . . , 1) allocating project n is optimal, and the welfare for any project other
than n is at most a 2/H factor of the optimal. For ℓ ≤ n− 1, s = (0, 1ℓ, 0n−ℓ−1) allocating project ℓ is optimal,
and the welfare for any project other than ℓ is at most a 2/H factor of the optimal. Hence when s = (0, 1ℓ, 0n−ℓ−1)
(resp. s = (1, 1, . . . , 1)), any α-approximation should allocate project ℓ (resp. n) with probability at least α.

However, by Proposition 3.2, for any truthfully implementable f it holds that v satisfies f -single-crossing,
since the valuations are auto-linear. Observe that, for all i and s−i the slope ∂vi

∂si
(j; s) is decreasing in j. That is,

for all j1 < j2 we have vi(j1; s
′
i, s−i)− vi(j1; s) > vi(j2; s

′
i, s−i)− vi(j2; s), for s

′
i > si. Thus, by f -single-crossing

any truthfully implementable social choice function f cannot both allocate j1 at s and j2 at (s′i, s−i) (it can only
do one or the other).

This implies, if f allocates ℓ at (0, 1ℓ, 0n−ℓ−1) for 0 ≤ ℓ < n, then at (0, 1ℓ
′
, 0n−ℓ′−1) (resp. (1, . . . , 1)) it

cannot allocate project ℓ′ ̸= ℓ (resp. n). Recall, however, that for every project 0 ≤ ℓ < n, project ℓ must be
allocated with probability at least α at the signal (0, 1ℓ, 0n−ℓ−1), and by the previous claim these events must be
disjoint. Therefore, with probability at least n · α the social choice function f allocates some project other than
n at the signal (1, . . . , 1). Since the probability that project n is allocated at (1, . . . , 1) must be at least α, this
implies that 1− n · α ≥ α. Thus, α ≤ 1/(n+ 1), and hence proving the required lower bound.

The above example shows that, in the absence of strong single-crossing, we cannot do any better than picking
a project at random. Unlike auction settings, SOS does not come to our rescue.
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4.3 Exclusion Allows Approximation A key property that enables a universally truthful mechanism with
constant-factor approximation in the auctions setting is excludability. Indeed, the mechanism in [23] entirely
excludes a chosen set of agents from being allocated. This is a known tool for truthfulness [26, 23]: the excluded
agents have nothing to lose, and thus would report their valuations (or signals, in IDV settings) truthfully. Then,
it only remains to show that by excluding agents cleverly enough, the loss in welfare is limited. Unfortunately,
the situation with public projects is different. In contrast to auctions, where goods are allocated to individual
agents, pure public goods are non-excludable by definition. Apparently, this challenge leads to the impossibility
result cast in Theorem 4.1. To alleviate this barrier, we turn to a variant of public goods that allows for exclusion.

Excludable public projects. We consider the setting of excludable public projects [15, 16] (also known as
“club goods”). In this setting, for each project j chosen by the mechanism, the mechanism is allowed to exclude
a set of agents Ej ⊆ [n] from using it. That is, agents in Ej obtain no value from project j. In fact, our results
hold even with respect to a more restricted class of mechanisms where Ej = Ej′ for every j, j′ ∈ [m]; i.e., the set
of excluded agents is identical for all projects.

Formally, an instance of globally excludable public projects is defined by the tuple (n,S,m,v, k), where a
feasible outcome is given by a set J ⊆ [m] of size at most k, along with a set E ⊆ [n] of excluded agents. Slightly
overloading notation, the valuation vi is defined as vi(J,E; s) = vi(J ; s) for i /∈ E and zero otherwise.

Intuition for truthfulness. Global exclusion is useful for the design of truthful mechanisms. Indeed, as
in the case of auctions, the excluded agents gain no benefit no matter what they report, and would therefore
lose nothing from reporting their signals truthfully. Notably, this is not the case for “local exclusion”, namely,
where every project has a different set of excluded agents. Indeed, an agent who is excluded from some project
j may still wish to misreport her signal in order to affect the allocation of a different project she is not excluded
from. Interestingly, even if agents have independent signals for different projects (this setting is beyond the one
we consider here), an agent who is excluded from some project j may still have incentive to lie about her signal
for project j, since it may affect the allocation of different projects (see Appendix E for an example).

Clearly, exclusion might harm welfare, as the excluded agents contribute nothing to the social welfare. Our
main positive result is that the universally-truthful mechanism devised in [23] can be adapted to excludable public
goods, and the same 1/4-approximation to the optimal social welfare applies.

We first observe that it is without loss of generality (computational considerations aside) to restrict attention
to the case where a single project should be chosen (i.e., k = 1). Indeed, given an instance (n,S,m,v, k) where k
projects should be chosen, one can consider an instance (n,S,

(
m
k

)
,v′, 1), where every k-project set in the original

instance is a “meta-project” in the new instance, and v′i(J,E; s) = vi(J,E; s).

Approximation. We consider the Random-Sampling-VCG mechanism, introduced in [23] for combinatorial
auctions, adapted to excludable public projects as described below.

For any setting with separable valuations, Random-Sampling-VCG is a universally truthful mechanism. This
property arises from the fact that globally excluded agents have no incentive to lie about their signals as they get
nothing in any possible outcome. Further, if the valuations are SOS, then using the key lemma (Lemma 4.2), we
get a 1/4-approximation to the optimal welfare.

Theorem 4.2. There is an ex-post IC-IR mechanism that guarantees a 1/4-approximation for the optimal social
welfare under the setting of excludable public projects with separable SOS valuations.

We focus on globally excludable settings, as global exclusion is all that is required for this mechanism.
Moreover, due to the reduction shown above, we may restrict our attention to settings with k = 1. We start by
considering the following class of mechanisms, similar to the VCG-inspired mechanisms from [23].

Algorithm 1. (A-exclusion-VCG) Given any valuations v, and a subset of agents A, we define the A-
exclusion-VCG mechanism as follows:

1. All agents report some signals s̃i ∈ Si.

2. For agents i /∈ A, define wi(a; s̃i, s̃A) = vi(a; s̃i, s̃A, 0⃗Ac\{i}) for all projects a.

3. Allocate a∗ ∈ argmaxa
∑

i/∈A wi(a; s̃i, s̃A).
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4. Compute generalized VCG prices for all i /∈ A,

pi(s̃) =
(
g−i(a

∗; s̃−i)− g−i(a
∗; s̃A, 0⃗Ac\{i})

)
−

∑
i′ /∈A∪{i}

wi′(a
∗; s̃i′ , s̃A) + max

a

∑
i′ /∈A∪{i}

wi′(a; s̃i′ , s̃A)

Lemma 4.1. The A-exclusion-VCG mechanism is truthful when the valuations are separable SOS.4

Proof. [Proof. [Following [23], Theorem 5.1]] For any agent i with true signal si, and fixed s̃−i = s−i, we show
that her utility for reporting s̃i = si is at least her utility for reporting s̃i = s′i for all s

′
i ̸= si.

Clearly, for any i ∈ A, the utility of i is 0 (with no allocation and 0 payment) for any reported signal. Hence
truthfulness trivially follows. Let f(s) be the output of the A-exclusion mechanism for any reported signals s̃ = s.
For any agent i /∈ A, observe that the price pi(s̃) does not depend on s̃i. For separable SOS valuations, with
vi(a, s) = hi(a; si) + g−i(a; s−i) we have wi(a; s̃i, s̃A) = hi(a; s̃i) + g−i(a; s̃A, 0⃗Ac\{i}). Thus we see that for all s̃i
and s̃−i = s−i and â = f(s̃i, s−i)

pi(s̃i, s−i) =
(
g−i(â; s−i)− g−i(â; sA, 0⃗Ac\{i})

)
−

∑
i′ /∈A∪{i}

wi′(â; si′ , sA) + max
a

∑
i′ /∈A∪{i}

wi′(a; si′ , sA)

=
(
g−i(â; s−i)− g−i(â; sA, 0⃗Ac\{i})

)
+ wi(â; si, sA)−

∑
i′ /∈A

wi′(â; si′ , sA) + max
a

∑
i′ /∈A∪{i}

wi′(a; si′ , sA)

= vi(â; s)−
∑
i′ /∈A

wi′(â; si′ , sA) + max
a

∑
i′ /∈A∪{i}

wi′(a; si′ , sA)

Hence we have that the utility of agent i with true signal si and reported signal s̃i is,

vi(f(s̃i, s−i); s)− pi(s̃i, s−i) =
∑
i′ /∈A

wi′(â; si′ , sA)−

max
a

∑
i′ /∈A∪{i}

wi′(a; si′ , sA)


Note that, the first term is maximized at â = f(s) by definition of our social choice function. Thus, the utility

of agent i for s̃i = si is maximal. Moreover, we note that the utility at s̃i = si is non-negative. This is because
the first term is larger than the second term due to reasons similar to VCG.

The A-exclusion-VCG mechanism assumes an arbitrary set A of excluded agents. This is used as a subroutine
in the mechanism for which we obtain our approximation result, defined as follows.

Algorithm 2. (Random-Sampling-VCG) Randomly sample a subset of agents A ⊆ [n] uniformly at random.
Then run the A-exclusion-VCG mechanism.

By Lemma 4.1, for every fixed A ⊆ [n] the A-exclusion-VCG mechanism is truthful, therefore we obtain the
following corollary.

Corollary 4.1. Random-Sampling-VCG is a universally truthful mechanism when the valuations are separable
SOS.

The final component we need for the proof of the theorem is the Key Lemma (Eden et al. [23]).

Lemma 4.2. (Key Lemma, [23]) Let vi : (R+)
n → R+ be any SOS function. Let A be a uniformly random

subset of [n] \ {i} and B = Ac \ {i}. Then we have for all s, EA[vi(si, sA, 0⃗B)] ≥ 1
2vi(s).

We are now ready to prove the theorem.

4We actually do not need the full SOS property, we only need vi(a; s) = hi(a; si) + g−i(a; s−i).
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Proof. [Proof of theorem 4.2] For every profile s, i ∈ [n] and a ∈ A, we have

EA[wi(a; si, sA) · 1{i/∈A}] = E[vi(a; si, sA, 0⃗Ac\{i}) | i /∈ A] Pr[i /∈ A] ≥ 1

4
vi(a; s).

This follows from Lemma 4.2, since vi(a; ·) is an SOS function, and by noting that Pr[i /∈ A] ≥ 1
2 . Therefore,

for any s let ã be a welfare maximizing allocation. For every subset A, the social welfare of A-exclusion-VCG is∑
i/∈A vi(a

∗; s) ≥ ∑
i/∈A wi(a

∗; si, sA) when a∗ ∈ argmaxa∈A
∑

i/∈A wi(a; si, sA).
Hence the social welfare of the Random-Sampling-VCG is at least

EA

[
max
a∈A

∑
i/∈A

wi(a; si, sA)
]
≥ EA

[∑
i

wi(ã; si, sA) · 1{i/∈A}
]
=

∑
i

EA[wi(ã; si, sA) · 1{i/∈A}] ≥
1

4

∑
i

vi(ã; s).

5 A Useful Characterization of IDV Implementability

In this section we complement our characterization results from Section 3 by pushing our f -single-crossing
characterization to its limit. In Section 5.1 we introduce decomposable valuations and show that f -single-
crossing characterizes implementability for this class of valuations. In Section 5.2 we discuss the connections
between implementability in IPV and IDV, showing in particular that f -single-crossing is analogous to W-Mon.
In Section 5.3 we identify decomposable valuations as precisely the class for which W-Mon (equivalently f -single-
crossing) characterizes implementability, thus mirroring convex domains in IPV settings.

5.1 Extension to Decomposable Valuations The decomposition property of auto-linear valuations
(Eq. C.2) is key in enabling the characterization through f -single-crossing. With this in mind, we define a
broader class of valuations called decomposable valuations and extend the characterization found for auto-linear
to this broader class.

Decomposable Valuations. We say that a valuation vi is decomposable if there exist functions v̂i : S → R+,
hi : A× S−i → R+ and gi : A× S−i → R, such that for every a, s we have

(5.1) vi(a; s) = v̂i(s) · hi(a; s−i) + gi(a; s−i).

For example, the valuation function v1 defined as v1(1; s) = s21 + s2, v1(2; s) = s21s2 is a decomposable
valuation, where v̂1(s1, s2) = s21, h1(1; s2) = 1, h1(2; s2) = s2, g1(1; s2) = s2, and g1(2; s2) = 0.

We observe that decomposable valuations are strictly more general than the following classes of valuations:
(i) separable5 environments [38, 12], where hi does not depend on s−i and gi ≡ 0, (ii) single-dimensional settings,
where hi(a; s−i) = 1 if i ∈ a and 0 otherwise and gi ≡ 0, and (iii) auto-linear valuations where v̂i(si, s−i) = si.

In the following example we illustrate the different types of valuation functions discussed: the valuation
of agent 1 is auto-linear while the valuation of agent 2 is not auto-linear (since v22 depends on (s2)

2) but is
decomposable, and the valuation of agent 3 is not even decomposable (since v31 and v32 depend on s3 in different
ways – recall Eq. (5.1)).

Example 5.1. (Public project instance with interdependence) There are n = 3 agents and m = 2
projects. Assume k = 1, i.e., a single project can be realized. Each signal space is {0, 1, 2}, and the valuations of
the agents for the two projects depend on the signals as follows:

• Agent 1: Auto-linear. v11 = s1s2, v12 = s1(s2)
2;

• Agent 2: Decomposable. v21 = s1 + (s2)
2, v22 = s1(s2)

2;

• Agent 3: Non-decomposable. v31 = s1 + s2 + s3, v32 = s1(s3)
3.

Analysis: Under signal profile (1, 0, 0), the welfare-maximizing project is project 1 (with social welfare of 2,
compared to a social welfare of 0 for the other project). Under signal profile (1, 2, 2), the welfare-maximizing
project is project 2 (with social welfare of 16, compared to a social welfare of 12 for the other project).

5Not to be confused with separable SOS, as defined in [23] – see Section 4.
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Single-Crossing†

(Def. 2.2)

Strong
Single-Crossing*

(Def. 3.1)

single dim.

(Obs. C.1)

f -Single-Crossing*

(Def. 3.2)

decomp. and f = welfare maximization

(Obs. 5.1)

Weak
f -Single-Crossing

(Def. 6.1)

decomposable

(Lem. 6.1)

IDV
ImplementabilityProp. 6.1

W-Mon

decomp.

(Lem. D.2)

Lemma D.1

C-Mon
convex domain

& finite-valued f [1]

Obs. B.1

IPV
Implementability[45]

[12]

IDV

IPV

restricted setting

Figure 2: A scheme of the connections between implementability characterizations.
For example, the scheme shows the equivalence between f -single-crossing and W-Mon for decomposable valuations
(see the “triangle” of arrows formed on the bottom-left). It further shows that the f -single-crossing property
characterizes implementability for decomposable valuations in the IDV model (see the middle “line” of arrows
from left to right). See Sections 3 and 6 for details.
†Single-crossing is defined for single-dimensional settings.
*Strong single-crossing and f -single-crossing are defined for decomposable valuations (see Observation 5.1).

For any decomposable valuations v, we note that ∂vi

∂si
(a; s) = hi(a; s−i)

∂v̂i
∂si

(s). Thus, Definitions 3.1 and 3.2
can be immediately extended to decomposable valuations.

Observation 5.1. For any decomposable valuation vi, we define strong single-crossing and f -single-crossing
exactly like Definition 3.1 and Definition 3.2 respectively. Further, for any decomposable valuation profile v
Observation C.2 holds.

Hence, by following the proof approach of Proposition 3.2 we immediately get that f -single-crossing is
necessary to truthfully implement f for any IDV setting with decomposable valuations.

Corollary 5.1. Given any IDV social choice setting with decomposable valuations v, a social choice function
is truthfully implementable only if v satisfies f -single-crossing.

Moreover, we show that, for any decomposable valuation profile v, f -single-crossing is both necessary and
sufficient condition for ex-post truthful implementability. We defer the proof to the appendix.

Theorem 5.1. For any IDV social choice setting with decomposable valuations v, a mechanism (f, p) is ex-post
IC-IR if and only if for every i, s−i, f -single-crossing holds, and the following payment identity and payment
inequality hold:

pi(s) = pi(0, s−i) +

∫ si

0

〈
vi(t, s−i),

∂f

∂si
(t, s−i)

〉
dt;

pi(0, s−i) ≤ ⟨vi(0, s−i), f(0, s−i)⟩

Moreover, if we additionally require prices to be non-negative, it is sufficient to additionally have the following
payment identity: pi(0, s−i) = ⟨vi(0, s−i), f(0, s−i)⟩
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5.2 Implementability in IDV versus IPV In this section we show the parallels between single-crossing-
based characterizations of implementability, and classic characterizations including C-Mon and W-Mon (see
Appendix B.1 for the classic definitions). Our main results in this section are Corollary 5.2 and Corollary 5.3,
and we achieve these using the Chung-Ely [12] framework (see Lemma 5.1) as well as the results of Ashlagi et al.
[1]. See also Figure 2 for an illustration of these connections.

Chung and Ely [12] establish a relationship between characterizing implementability in social choice settings
with IDV and with IPV:

Lemma 5.1. (Characterizing Implementability with IDV vs. IPV, [12]) Let C be a condition that ap-
plies to a quadruple (A, S, v(·), f) that represents a single-agent, single-dimensional social choice setting with
alternative set A, value domain {v(s) | s ∈ S}, and a social choice function f . The following characterizations
using condition C are equivalent, i.e., one holds if and only if the other holds.

• In a social choice setting with IDV, a social choice function f : S → A is ex post IC if (respectively only if)
∀i,∀s−i, the quadruple (A, Si, vi(· ; s−i, ·), f(s−i, ·)) satisfies condition C;

• In a social choice setting with IPV, social choice function f : V → A is dominant-strategy IC if (respectively
only if) ∀i,∀s−i, the quadruple (A, Vi, vi, f(s−i, ·)) satisfies condition C.

We begin by defining generalizations of W-Mon/weak monotonicity (a well studied characterization of IPV
implementability) for the IDV setting.

Definition 5.1. (W-Mon Generalized to IDV) Given any IDV social choice setting with valuations v, a
social choice function f satisfies weak monotonicity (W-Mon) if for any s ∈ S, player i and signal s′i ∈ Si, the
following holds: f(s) = a and f(s′i, s−i) = b implies that vi(b; s

′
i, s−i)− vi(b; s) ≥ vi(a; s

′
i, s−i)− vi(a; s).

The definition of a convex domain V in IPV settings translates to the following definition in IDV settings
using the Chung-Ely framework.

Definition 5.2. (Convex Domain for IDV) Given any IDV social choice setting (n,S,A, v⃗), for each i, s−i,
let Vi(s−i) = {vi(s) ∈ Rµ | si ∈ Si}. We say that the domain is convex if the closure of Vi(s−i) is convex for each
i and s−i.

With these definitions we get the following proposition from Theorem B.1 and Lemma 5.1 (Ashlagi et al. [1]
and Chung and Ely [12]).

Proposition 5.1. (Implementability with IDV) Consider an IDV social choice setting (n,S,A, v⃗) and a
social choice function f .

1. (Weak monotonicity is necessary) Every implementable f satisfies weak monotonicity.6

2. (Weak monotonicity is sometimes sufficient) Suppose that the domain is convex, then every finitely-valued
f that satisfies weak monotonicity is implementable.

Decomposable valuations as convex domains. By definition, Vi(s−i) is a curve in Rµ, and a curve can be
a convex domain if only if it is a straight line. Therefore, it is easy to see that auto-linear valuations give rise
to convex domains. Less obviously, any decomposable (and continuous) valuation profile gives rise to a convex
domain. The reason is that much like in auto-linear valuations, the direction of the tangent to the curve Vi(s−i)
remains constant for all signals si ∈ Si in decomposable valuations. We formalize the intuition of the discussion
above in the following lemma.

Lemma 5.2. Suppose Si is an interval in R+ and vi is continuous in si. For each i, s−i, let D = {vi(s) ∈ Rµ |
si ∈ Si} be the induced domain, then (the closure of) D is convex if and only if vi is decomposable.

6For an alternative proof see Appendix D, Lemma D.3.
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Proof. Fix some agent i and signals s−i. Suppose the domain D is convex. We first establish the following claim;
see proof in the appendix.

Claim 5.1. For every two signals s and s′ in Si and every t ∈ [s, s′] there exists some λ ∈ [0, 1] such that
vi(t, s−i) = (1− λ) · vi(s, s−i) + λ · vi(s, s−i).

We next show that for any signal s ∈ Si there exists λ(s) ≥ 0 such that vi(s, s−i) = (1 − λ(s))vi(0, s−i) +
λ(s)vi(1, s−i). For s ∈ [0, 1] it follows directly from the claim above. Consider s > 1. By the claim above, there
exists λ′ ∈ (0, 1] such that vi(1, s−i) = (1− λ′)vi(0, s−i) + λ′vi(s, s−i). Now by taking λ(s) = 1− 1/λ′ we obtain
the desired equality.

We conclude that vi can be written as vi(s) = λ(si)(vi(1, s−i)−vi(0, s−i))+vi(0, s−i), which is a decomposable
valuation with v̂i(s) = λ(si), hi(s−i) = vi(1, s−i)−vi(0, s−i) and gi = vi(0, s−i). This proves the forward direction
of the lemma.

For the converse direction, let vi(s) = v̂i(s) · hi(s−i) + gi(s−i) and consider two signals s, s′ ∈ Si. For any
λ ∈ [0, 1], we have λvi(s, s−i) + (1− λ)vi(s, s−i) = (λv̂i(s, s−i) + (1− λ)vi(s

′, s−i)) · hi(s−i) + gi(s−i).
Since v̂i(·, s−i) is a continuous function from Si to R, by the intermediate value theorem there exists some

t ∈ Si such that v̂i(t, s−i) = λv̂i(s, s−i) + (1− λ)v̂i(s
′, s−i). Plugging this back into the decomposed formulation

of vi, we obtain vi(t, s−i) = λv̂i(s, s−i) + (1 − λ)vi(s
′, s−i). This proves that D is a convex domain, concluding

the proof of the lemma.

Connecting f-single-crossing and W-Mon. The following lemma now follows from bullets (2) and (3) of
Proposition 5.1, combined with Lemma 5.2.

Lemma 5.3. Given any decomposable valuations v, a finite-valued social choice function f is truthfully imple-
mentable if and only if f satisfies weak monotonicity (W-Mon).

Recall that we have already established a stronger result in the previous section: in Theorem 5.1 we showed
that for any social choice function (potentially infinitely-valued), f -single-crossing is both necessary and sufficient
for implementability under decomposable valuations.

By Lemma 5.3 and Theorem 5.1, we establish an equivalence between weak monotonicity and f -single-crossing
under decomposable valuations for finite-valued fs. The same holds for general fs by Lemmas 6.1, D.1, and D.2.

Corollary 5.2. For any IDV social choice setting with decomposable valuations v, it holds that a social choice
function f satisfies weak monotonicity (W-Mon) if and only if v satisfies f -single-crossing.

5.3 Decomposable Valuations form the Frontier of W-Mon Truthfulness An interesting implication
that arises from the connection between decomposable valuations and convex domains is that decomposable
valuations form the frontier of W-Mon truthfulness. The following theorem from [1] shows that in IPV settings,
when the domain is non-convex then W-Mon is insufficient for implementability.

Theorem 5.2. (Ashlagi et al. [1], Theorem 3) Given any single-agent IPV social choice setting with a non-
convex domain (which is not single-dimensional), there exists a finite-valued social choice function f for which
weak monotonicity (W-Mon) holds and yet f is not implementable.

Lemma 5.2 shows that for any valuation function v, the induced domain is convex if and only if v is
decomposable. Therefore, by applying Theorem 5.2 we obtain the following result.

Corollary 5.3. For any non-decomposable valuation v (which is not single-dimensional), there exists a social
choice function f for which weak monotonicity (W-Mon) holds and yet f is not implementable.

This result implies that the class of decomposable valuations is the frontier of valuations in IDV settings for
which weak monotonicity characterizes truthfulness. That is, for any valuation function that is non-decomposable,
there exists a single agent example with some social choice function f , for which weak monotonicity is insufficient
for implementability. Therefore, any class of valuations broader than decomposable valuations would require
stronger conditions for implementability.
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6 A Characterization of Implementability: General Valuations

In this section we study IDV implementability for general valuations. We define weak f -single-crossing and
show that it characterizes implementability for general IDV settings. Further, we use the Chung and Ely
[12] framework to study connections between the general implementability characterization in IPV, namely C-
Mon/cycle monotonicity [45], and weak f -single-crossing. See also Figure 2 for an illustration of these connections.

For general valuations beyond decomposable, a more complex condition for characterizing implementability
than f -single-crossing is needed. The explanation for this is as follows: In the case of decomposable valuations v,
the decomposability property naturally ensures that for every i, s−i and outcomes a, b ∈ ∆(A), either
∂vi

∂si
(a; si, s−i) ≤ ∂vi

∂si
(b; si, s−i) for all si ∈ Si, or

∂vi
∂si

(a; si, s−i) ≥ ∂vi
∂si

(b; si, s−i) for all si ∈ Si. In other words, the

slopes ∂vi

∂si
induce a global ordering of the outcomes that does not depend on si. This will not necessarily hold

for general valuations and so f -single-crossing is ill-defined for such valuations. We thus introduce the following
definition and show it is the “right” generalization of f -single-crossing, in the sense that it is both necessary and
sufficient for implementability.

Definition 6.1. Let f be a social choice function. We say that the valuations v satisfy weak f -single-crossing
if for each agent i and signal profile s ∈ S, and for every z ∈ Si it holds that:

(6.2) ⟨vi(z, s−i)− vi(s), f(z, s−i)⟩ ≥
∫ z

si

〈
∂vi
∂si

(t, s−i), f(t, s−i)

〉
dt

The above definition can be loosely viewed as follows. For z > si, the outcome f(z, s−i) must have a marginal
improvement in vi — as we increase the signal from z to si — which is greater than the cumulative marginal
improvements made by all outcomes f(t, s−i) for all t ∈ [si, z].

Proposition 6.1. (Weak f-single-crossing characterizes implementability) For any IDV social
choice setting, a mechanism is ex-post IC-IR if and only if for every i, s−i, weak f -single-crossing holds, and the
following payment identity and payment inequality hold:

pi(s) = pi(0, s−i) +

∫ si

0

〈
vi(t, s−i),

∂f

∂si
(t, s−i)

〉
dt;(6.3)

pi(0, s−i) ≤ ⟨vi(0, s−i), f(0, s−i)⟩ .(6.4)

Moreover, if we additionally require prices to be non-negative, it is sufficient to additionally have the following
payment identity: pi(0, s−i) = ⟨vi(0, s−i), f(0, s−i)⟩ .
It is not hard to see that, for any decomposable valuation profile v, f -single-crossing implies weak f -single-crossing.
In fact, under decomposable valuations, the two notions coincide, as we show in the following lemma.

Lemma 6.1. A decomposable valuation profile v satisfies f -single-crossing if and only if v satisfies weak f -single-
crossing.

Connecting C-Mon and weak f-single-crossing The following is a generalization of C-Mon [45] for the
IDV setting (see Appendix B.1 for the classic IPV definition).

Definition 6.2. (C-Mon Generalized to IDV) Given any IDV social choice setting with valuations v, a
social choice function f satisfies cycle monotonicity (C-Mon) if for any player i, s−i, and any set of ℓ+1 signals

s
(1)
i , . . . , s

(ℓ+1)
i ∈ Si with s

(ℓ+1)
i = s

(1)
i , we have that

∑ℓ
k=1⟨vi(s

(k)
i , s−i), f(s

(k)
i , s−i)− f(s

(k+1)
i , s−i)⟩ ≥ 0.

Using the Chung and Ely [12] equivalence from Lemma 5.1 and general IPV characterization by Rochet [45]
(see bullet (1) in Theorem B.1), we get the following proposition.

Proposition 6.2. (C-Mon is necessary and sufficient) Consider an IDV social choice setting (n,S,A, v⃗)
and a social choice function f . f is truthfully implementable if and only if it satisfies cycle monotonicity.

Putting together Proposition 6.1 and Proposition 6.2 we immediately get the following equivalence of weak-
f -single-crossing and C-Mon.

Corollary 6.1. For any IDV social choice setting with valuation profile v, it holds that a social choice function
f satisfies cycle monotonicity (C-Mon) if and only if v satisfies weak f -single-crossing.
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7 Open Problems

Our work suggests many natural directions for future research. First, providing improved approximations or giving
tighter bounds: Can we improve our 1

4 approximation algorithm, perhaps by allowing randomized mechanisms
that are truthful in expectation rather than universally truthful? Does the impossibility result of Theorem 4.1
that necessitates excludability hold for truthful in expectation mechanisms? Can we show that the exclusion
step at the beginning of the SOS mechanism is necessary not just for public projects but even for auctions?
Second, relaxing assumptions: For example, is the separable SOS assumption necessary for a constant-factor
approximation for public projects? (The same question is still open for auction design as well.) Third, extending
our results to related models: E.g., what is a characterization for truthfulness in IDV Bayesian settings (i.e.,
with priors over the signals)? Can we design truthful mechanisms for other/additional objectives such as revenue
maximization or budget balance? Fourth, computational results: While our main focus is implementability rather
than computation, we do get a polynomial-time truthful approximation algorithm for CPPP with IDV under
additive valuations. A truthful solution to CPPP is APX-hard even for IPV for more general valuations [43].
What approximation factor is tractable for CPPP with IDV beyond additive valuations?
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A Additional Related Work

Single-dimensional settings. The bulk of algorithmic work on mechanism design has focused on the IPV
model. Early ventures beyond this model considered private values that are correlated [e.g., 19]. Roughgarden
and Talgam-Cohen [46] suggested to apply the computer science lens to the study of mechanisms for interdependent
values. They unified and generalized previous results to establish technical foundations for this study, including a
characterization of truthful mechanisms for single-parameter settings with IDV. They also demonstrated natural
sufficient conditions under which positive results in the form of robust mechanisms for approximate revenue
maximization can be achieved. Concurrently, Li [33] developed a simple near-optimal auction for revenue
maximization with IDV, namely, the VCG mechanism with monopoly reserves, assuming monotone hazard rate
value distributions. Chawla et al. [8] studied revenue approximation under relaxed assumptions. They introduced
a variant of the generalized VCG auction with reserve prices and random admission, and showed that this
auction gives a constant approximation to the optimal expected revenue under a submodularity assumption on
the valuation functions.

The above studies and much of the other work on interdependent values assumed a single-crossing condition
[e.g. 37, 14, 2, 13, 3, 9] (see also [50]). Interdependent values with relaxed single-crossing were first studied
by Eden et al. [22] with a focus on welfare. Interdependence without any single-crossing condition was studied
by Eden et al. [23], who introduced the submodularity over signals (SOS) condition. There is also a literature
relaxing the knowledge assumption on the valuation functions themselves (in addition to the signals, which are
privately-known by design in the IDV model). In [13, 44] the valuations are unknown only to the designer ; in
[25] they are unknown to the other agents as well (each agent knows only her own valuation).

Beyond single-dimensional settings. Other studies have considered similar strong single-crossing condi-
tions for truthful welfare maximization, for example, Dasgupta and Maskin [13] define a stronger condition for
general multi-item auctions, Jehiel and Moldovanu [29] define this for general social setting under fully linear
valuations, Chung and Ely [12] define this for separable environments (which is non-comparable to multi-item
auctions), and Ito and Parkes [28] apply it to auctions with single-minded bidders (which is a separable environ-
ment). We shall define a generalization of this condition in Definition 3.1 for the broader class of decomposable
valuations, and apply it beyond welfare maximization. To our knowledge, there is no generalized single-crossing
condition that characterizes welfare maximization implementability in general social choice settings with IDV.

Chung and Ely [12] show a connection between IPV and IDV truthfulness characterizations – for completeness
we include this as Lemma 5.1. This enables importing to IDV characterizations for IPV, including the works of
[32, 4, 27, 48] on weak monotonicity (W-Mon).

There has also been work on multi-dimensional settings and multi-dimensional signals. Jehiel and Moldovanu
[29] study a general social choice setting with multi-dimensional signals under fully linear valuations where
vi(a; s) =

∑n
j=1 α

a
ij · saij for each agent i. They consider a multi-dimensional signal space, compared to our

single-dimensional signal space. On the other hand, they consider fully linear valuations, which is a special
case of decomposable valuations considered in our work. They provide a characterization for Bayesian incentive
compatibility, which translates to our f -single-crossing definition in the single-parameter signal regime (when
applied to fully linear valuations). Jehiel et al. [30] showed that the constant social choice functions are the
only deterministic social choice functions that are implementable in general multi-dimensional IDV settings with
multi-dimensional signals and transferable utilities.

Much of the described works on interdependence are in the context of auctions; we now turn to public projects
which were studied for the IPV model.

Public projects. Public projects have long been studied in economics, with main objectives of welfare
maximization and budget balancedness [39]. Papadimitriou et al. [43] study the hardness of the Combinatorial
Public Projects Problem (with independent, multi-parameter valuations), measured by both communication
complexity and computational complexity. A related but different body of AGT literature returns to the problem
of cost sharing [18, 17] via approximation. In these settings each public project has a cost and the goal of the
mechanism is to maximize welfare under the constraint that it must cover the costs of the chosen projects using
the payments of the agents. The property of excludability is inherent to the model, since cost sharing implies that
agents on which the mechanism does not impose a cost for a given project should not be able to enjoy the benefits
of that project. The topic of excludable public goods was studied extensively in the economics literature [15, 16],
sometimes referred to as club goods [6]. Our paper extends this well-studied setting to multiple public goods and
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interdependent values (while we do not consider the cost of projects nor the aspect of budget-balancedness).

B Preliminaries

B.1 Implementability with IPV The literature provides monotonicity characterizations of implementability
for both single-dimensional settings and general settings. Monotonicity refers to how the social choice changes
with changes in an agent’s values. In single-dimensional settings, it is well-known that f is (dominant strategy
IC-IR) implementable if and only if for every i,v−i it holds that fi(vi,v−i) is monotone non-decreasing in vi [40].
In multi-dimensional social choice settings, the following is a counterpart to single-dimensional monotonicity:

Definition B.1. (Weak monotonicity [32]) Consider a social choice setting (n,V,A). A social choice
function f satisfies weak monotonicity if for every v ∈ V, agent i ∈ [n] and v′i ∈ Vi:

⟨vi − v′i, f(v)− f(v′i,v−i)⟩ ≥ 0.

In other words, f(v) = a and f(v′i,v−i) = b for two alternatives a, b ∈ A implies that vi(a)− v′i(a) ≥ vi(b)− v′i(b)
(equivalently, v′i(b)−v′i(a) ≥ vi(b)−vi(a)). Intuitively, if switching from vi to v′i caused the social choice to switch
from a to b, then agent i’s value for b relative to a must have grown with the switch.

Weak monotonicity is a necessary condition for a social choice function to be truthfully implementable (in any
domain). However, unlike monotonicity in single-dimensional settings, weak monotonicity is insufficient in many
domains (and hence does not characterize truthfulness). A central line of work [32, 47, 1] studies under which
domains weak monotonicity is both sufficient and necessary for implementation. In particular, Ashlagi et al. [1]
show that when (the closure of) the domain V is convex weak monotonicty is both sufficient and necessary for
truthful implementation of any finite-valued social choice function f .

Rochet [45] found that a different notion called cycle monotonicity characterizes implementation for all
domains. However this notion is less intuitive and considered much harder to work with.

Definition B.2. (Cycle monotonicity [45]) Consider a social choice setting (n,V,A). A social choice
function f satisfies cycle monotonicity if for every i ∈ [n], v−i ∈ V−i, ℓ ≥ 2 and v(1), v(2), . . . , v(ℓ) ∈ Vi

where v(ℓ+1) = v(1), we have:
ℓ∑

j=1

⟨v(j) − v(j+1), f(v(j),v−i)⟩ ≥ 0.

Observation B.1. Cycle monotonicity implies weak monotonicty, by setting ℓ = 2.

The following theorem summarizes the characterizations that are of particular interest to us.

Theorem B.1. (Implementability with IPV [45, 32, 47, 1]) Consider a social choice setting (n,V,A) and
a social choice function f .

1. (Cycle monotonicity is necessary and sufficient) f is implementable if and only if it satisfies cycle
monotonicity.

2. (Weak monotonicity is necessary) Every implementable f satisfies weak monotonicity.

3. (Weak monotonicity is sometimes sufficient) Suppose V is a convex domain, then every finitely-valued f
that satisfies weak monotonicity is implementable.

C Missing Details from Section 3

Strong single-crossing is necessary: A visual illustration. Conversely, without having the slopes of vi
with respect to si ordered “consistently”, i.e., when single-crossing does not hold, this is not possible. No set of
prices can shift the lines such that the welfare maximizing outcome would also be the utility maximizer of agent
i for every signal si. This is illustrated in Figure 3. The plot on the left depicts the utility of two projects as a
function of si (having fixed some set of signals s−i for the remaining agents). The blue and red lines depict vi
for projects j1 and j2, respectively. The blue and red regions are the regions where project j1 and j2 maximizes
welfare, respectively. Notice that the red line has a steeper slope than the blue line whereas the red region is to
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vi(j; ·, s−i)

si

j1

j2

f(·, s−i) = j2 f(·, s−i) = j1

vi(j; ·, s−i)− pij

si

j1
j2

f(·, s−i) = j2 f(·, s−i) = j1

vi(j; ·, s−i)− pij

si

j2

j1

f(·, s−i) = j2 f(·, s−i) = j1

Figure 3: An auto-linear setting with two projects where f -single-crossing does not hold.

the left of the blue region — the ordering is inconsistent! It is now easy to see that due to this discrepancy in the
ordering, no set of prices can simultaneously place the blue line above the red line in the blue region and the red
line above the blue line in the red region. Any price that shifts the red line below the blue line in the blue region
would necessarily do the same in both regions. Similarly, a set of prices that ensure the red line is at the top in
the red region would necessarily put it at the top in both regions.

Observation C.1. (Strong single-crossing generalizes (standard) single-crossing) Applying the
strong single-crossing condition to single-item auctions would mean that ∂ Wel

∂si
(i, s) ≥ ∂ Wel

∂si
(j, s) for all i, j, because

∂vi

∂si
(i; s) ≥ 0 = ∂vi

∂si
(j; s). Since by definition Wel(i; s) = vi(i, s), that is exactly the same as the single-crossing

condition ∂vi
∂si

(i, s) ≥ ∂vj
∂si

(j, s) from Definition 2.2.

Observation C.2. Let v be an auto-linear valuation profile, and f the welfare maximizing social choice function.
Then, v satisfies f -single-crossing if and only if v satisfies strong single-crossing.

C.1 Proofs from Sections 3

Proof. [Proof of Proposition 3.1] Follows by applying Proposition 6.1 for welfare maximizing social choice
functions. Since by Observation C.2 and Lemma 6.1, under auto-linear valuations, strong single-crossing is
equivalent to f -single crossing for a welfare maximizing social choice function f .

Proof. [Proof of Proposition 3.2] Recall that f is an ex-post truthfully implementable if for all i ∈ [n] there exists
a price function pi : S → R such that

⟨vi(s), f(s)⟩ − pi(s) ≥ ⟨vi(s), f(s′i, s−i)⟩ − pi(s
′
i, s−i) ∀s ∈ S, ∀s′i ∈ Si.

Similarly, when the true signal is s′i we have,

⟨vi(s′i, s−i), f(s
′
i, s−i)⟩ − pi(s

′
i, s−i) ≥ ⟨vi(s′i, s−i), f(s)⟩ − pi(s) ∀s ∈ S, ∀s′i ∈ Si.

Adding the above two inequalities and rearranging we get,

⟨vi(s)− vi(s
′
i, s−i), f(s)⟩ ≥ ⟨vi(s)− vi(s

′
i, s−i), f(s

′
i, s−i)⟩ ∀s ∈ S, ∀s′i ∈ Si.(C.1)

Observe that for any auto-linear valuation function vi,
∂vi
∂si

(a; s) is a constant with respect to si. In particular,

there exists a function gi : A× S−i → R+ such that,

vi(a; s) = si ·
∂vi
∂si

(a; s) + gi(a; s−i) ∀s ∈ S, a ∈ ∆(A),(C.2)
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where neither ∂vi
∂si

(a; s) nor gi(a; s−i) depends on si. Hence we have vi(s) − vi(s
′
i, s−i) = (si − s′i)

∂vi

∂si
(s). This

implies, for all i ∈ [n], s−i ∈ S−i, and si > s′i ∈ Si ,

⟨(si − s′i)
∂vi
∂si

(s), f(s)⟩ ≥ ⟨(si − s′i)
∂vi
∂si

(s), f(s′i, s−i)⟩

and therefore

⟨∂vi
∂si

(s), f(s)⟩ ≥ ⟨∂vi
∂si

(s), f(s′i, s−i)⟩

Hence proving v satisfies f -single-crossing. The sufficiency result follows from Proposition 6.1, since under auto-
linear valuations f -single-crossing implies weak f -single-crossing.

D Proofs from Sections 5 and 6

Proof. [Proof of Theorem 5.1] By Lemma 6.1 we have that f -single-crossing is equivalent to weak f -single-crossing
for decomposable valuations. Therefore the result follows from the more general result of Proposition 6.1.

Proof. [Proof of Proposition 6.1. [Following Roughgarden and Talgam-Cohen [46], Prop. 5.1]] We first prove
that for any ex-post IC and ex-post IR mechanism (f, p), the payments p must satisfy the payment identity and
payment inequality. By definition of ex-post IC, for any agent i, profile s ∈ S, and signal t ∈ Si, the following
inequalities must hold:

⟨vi(s), f(s)⟩ − pi(s) ≥ ⟨vi(s), f(t, s−i)⟩ − pi(t, s−i)

⟨vi(t, s−i), f(t, s−i)⟩ − pi(t, s−i) ≥ ⟨vi(t, s−i), f(s)⟩ − pi(s)

Rearranging and combining the two inequalities we obtain:

⟨vi(s), f(t, s−i)− f(s)⟩ ≤ pi(t, s−i)− pi(s) ≤ ⟨vi(t, s−i), f(t, s−i)− f(s)⟩

Dividing by t− si and taking the limit as t goes to si we obtain:

∂pi
∂si

(s) = ⟨vi(s),
∂f

∂si
(s)⟩

Integrating both sides, by the fundamental theorem of calculus, we obtain:

pi(s) = C +

∫ si

0

⟨vi(t, s−i),
∂f

∂si
(t, s−i)⟩dt,(D.3)

where C is some arbitrary constant. Noting that plugging si = 0 into Equation (D.3) yields pi(0, s−i) = C, we
obtain the payment identity of Equation (6.3). This shows that condition (6.3) must hold for any ex-post IC
mechanism.

The payment inequality of Equation (6.4) follows directly from the assumption that the mechanism (f, p)
is ex-post IR. Namely, by ex-post IR, the price agent i pays given the signal profile (0, s−i) cannot be larger
than agent i’s value for the signal profile (0, s−i). This shows that condition (6.4) must hold for any ex-post IR
mechanism.

Note that conditions (6.3) and (6.4) must hold for any ex-post IR and ex-post IC mechanism, regardless of
whether the social choice function satisfies weak f -single-crossing or not. We next show that payments satisfying
(6.3) and (6.4) guarantee the mechanism (f, p) is ex-post IR and ex-post IC if and only if we have weak f -single-
crossing.

We first show that the mechanism is ex-post IC if and only if weak f -single-crossing holds. That is, we want
to show that for every agent i, signal profile s ∈ S, and signal z ∈ Si the following inequality holds if and only if
Eq. (6.2) holds:

⟨vi(s), f(s)⟩ − pi(s) ≥ ⟨vi(s), f(z, s−i)⟩ − pi(z, s−i)(D.4)
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Plugging the price identity of Equation (6.3) into Equation (D.4) and rearranging we obtain:∫ z

si

⟨vi(t, s−i),
∂f

∂si
(t, s−i)⟩dt ≥ ⟨vi(s), f(z, s−i)− f(s)⟩

Applying integration by parts,

⟨vi(t, s−i), f(t, s−i)⟩
∣∣∣z
si
−
∫ z

si

⟨∂vi
∂si

(t, s−i), f(t, s−i)⟩dt ≥ ⟨vi(s), f(z, s−i)− f(s)⟩

Rearranging,

⟨vi(z, s−i)− vi(s), f(z, s−i)⟩ ≥
∫ z

si

⟨∂vi
∂si

(t, s−i), f(t, s−i)⟩dt,

which is exactly Equation (6.2), the condition for weak f -single-crossing. We conclude that ex-post IC holds if
and only if we have weak f -single-crossing.

We next consider ex-post IR. We would like to show that for every agent i and every signal profile s ∈ S

pi(s) ≤ ⟨vi(s), f(s)⟩(D.5)

Recall that by Equation (6.3), we have

pi(s) = pi(0, s−i) +

∫ si

0

〈
vi(t, s−i),

∂f

∂si
(t, s−i)

〉
dt

Applying integration by parts and rearranging we obtain

pi(s) = ⟨vi(s), f(s)⟩ −
(
⟨vi(0, s−i), f(0, s−i)⟩ − pi(0, s−i)

)
−

∫ si

0

⟨∂vi
∂si

(t, s−i), f(t, s−i)⟩dt

Note now that the term in parenthesis is non-negative by Equation (6.4) and the integration is non-negative
as valuations are monotone non-decreasing in all signals (and thus ∂vi

∂si
(t, s−i) is a vector of non-negative reals).

Therefore, the right hand side is at most ⟨vi(s), f(s)⟩, so Equation (D.5) holds and thus the mechanism satisfies
ex-post IR.

It remains to prove the final part of the proposition. Namely, that the payment identity pi(0, s−i) =
⟨vi(0, s−i), f(0, s−i)⟩ is sufficient for payments to be non-negative. By ex-post IC, for every agent i and signal
profile s ∈ S we have

⟨vi(0, s−i), f(0, s−i)⟩ − pi(0, s−i) ≥ ⟨vi(0, s−i), f(s)⟩ − pi(s)

Rearranging we obtain

pi(s) ≥ pi(0, s−i) + ⟨vi(0, s−i), f(s)⟩ − ⟨vi(0, s−i), f(0, s−i)⟩

Hence, for the payment under profile s to be non-negative, i.e., for pi(s) ≥ 0 to hold, it suffices for the right hand
side of the inequality above to be non-negative. Thus, it is sufficient to have

pi(0, s−i) ≥ ⟨vi(0, s−i), f(0, s−i)⟩ − ⟨vi(0, s−i), f(s)⟩

As valuations are non-negative for all signals, we have that ⟨vi(0, s−i), f(s)⟩ ≥ 0, and therefore the following
inequality is sufficient for non-negative prices:

pi(0, s−i) ≥ ⟨vi(0, s−i), f(0, s−i)⟩

Combining the above inequality with the payment inequality of Equation (6.4), we obtain the payment identity

pi(0, s−i) = ⟨vi(0, s−i), f(0, s−i)⟩

as a sufficient condition for prices to be non-negative. This proves the final part of the proposition, concluding
the proof of the proposition.
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Proof. [Proof of Lemma 6.1] We first show that, for any decomposable valuation profile, f -single-crossing implies
weak f -single crossing.

Fix some agent i and profile s ∈ S. Since f -single-crossing holds, for all t > t′ ∈ Si we have the following,

(D.6)

〈
∂vi
∂si

(s), f(t, s−i)

〉
≥

〈
∂vi
∂si

(s), f(t′, s−i)

〉
This is because for decomposable valuations the ordering of the slopes ∂vi

∂si
doesn’t depend on si.

Let z ∈ Si be some signals for agent i. If z = si, then Equation (6.2) vacuously holds. If z > si, since
f -single-crossing holds, we obtain the following inequality from Equation (D.6):

(D.7)

∫ z

si

〈
∂vi
∂si

(t, s−i), f(z, s−i)

〉
dt ≥

∫ z

si

〈
∂vi
∂si

(t, s−i), f(t, s−i)

〉
dt

By the fundamental theorem of calculus, this translates to

(D.8) ⟨vi(z, s−i)− vi(s), f(z, s−i)⟩ ≥
∫ z

si

〈
∂vi
∂si

(t, s−i), f(t, s−i)

〉
dt

and therefore Equation (6.2) holds for all z > si.
We next consider the case where z < si. Similarly to above, we obtain the following inequality from

Equation (D.6):

(D.9) ⟨vi(s)− vi(z, s−i), f(z, s−i)⟩ ≤
∫ si

z

〈
∂vi
∂si

(t, s−i), f(t, s−i)

〉
dt

Flipping the direction of integration and multiplying both sides of the inequality by -1 we obtain Equation (6.2).
This proves that f -single crossing implies weak f -single crossing.

The reverse direction follows from Lemmas D.1 and D.2, thus concluding the proof of the lemma.

Lemma D.1. Weak f -single-crossing implies weak monotonicity.

Proof. By weak f -single-crossing, for every agent i, s and z ∈ Si, we have that

⟨vi(z, s−i)− vi(s), f(z, s−i)⟩ ≥
∫ z

si

〈
∂vi
∂si

(t, s−i), f(t, s−i)

〉
dt(D.10)

and reversing the roles of z and si in Equation (6.2) we also have

⟨vi(s)− vi(z, s−i), f(s)⟩ ≥
∫ z

si

〈
∂vi
∂si

(t, s−i), f(t, s−i)

〉
dt(D.11)

Combining Equations (D.10) and (D.11) we obtain

⟨vi(z, s−i)− vi(s), f(z, s−i)⟩ ≥ ⟨vi(z, s−i)− vi(s), f(s)⟩ .

This proves that weak monotonicity holds.

Lemma D.2. Let v be decomposable valuations and let f be a social choice function. In this setting, weak
monotonicity implies f -single-crossing.

Proof. vi is decomposable and therefore there exist functions v̂i : S → R+, hi : A×S−i → R+, and gi : A×S−i → R
such that for every a, s, vi(a; s) = v̂i(s) · hi(a; s) + gi(a; s). By weak monotonicity, for every agent i, s and z ∈ Si,
we have that

⟨hi(s−i)(v̂i(z, s−i)− v̂i(si, s−i)), f(z, s−i)⟩ ≥ ⟨hi(s−i)(v̂i(z, s−i)− v̂i(si, s−i)), f(s)⟩ .
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Noting that the term (v̂i(z)− v̂i(si)) is a scalar, we obtain

(v̂i(z, s−i)− v̂i(si, s−i)) ⟨hi(s−i), f(z, s−i)⟩ ≥ (v̂i(z, s−i)− v̂i(si, s−i)) ⟨hi(s−i), f(s)⟩ .

Dividing both sides of the inequality by (v̂i(z, s−i) − v̂i(si, s−i)) and multiplying both sides by ∂v̂i
∂si

(t, s−i) for
arbitrary t ∈ Si we obtain〈

hi(s−i)
∂v̂i
∂si

(t, s−i), f(z, s−i)

〉
≥

〈
hi(s−i)

∂v̂i
∂si

(t, s−i), f(s)

〉
.(D.12)

Notice that ∂vi

∂si
(t, s−i) = hi(s−i)

∂v̂i
∂si

(t, s−i), and therefore by plugging t = si (resp. t = z) into Equation (D.12) we
obtain Equation (D.6), which is equivalent to the definition of f -single-crossing. This proves that f -single-crossing
holds.

Lemma D.3. Given any valuations v, a social choice function f is ex-post truthfully implementable only if f
satisfies (generalized) W-Mon.

Proof. To see why weak monotonicity follows directly from ex-post incentive compatibility, recall that a social
choice function f is ex-post IC implementable if there exists a price function p : S → R such that

⟨vi(s), f(s)⟩ − pi(s) ≥ ⟨vi(s), f(s′i, s−i)⟩ − pi(s
′
i, s−i) ∀i ∈ [n], ∀s ∈ S, ∀s′i ∈ Si.

Writing the same inequality while reversing the order of si and s′i and summing with the inequality above, we
obtain

⟨vi(s′i, s−i), f(s
′
i, s−i)− f(s)⟩ ≥ ⟨vi(s), f(s′i, s−i)− f(s)⟩ ∀i ∈ [n], ∀s ∈ S, ∀s′i ∈ Si,

which implies f is weakly monotone by definition.

Proof. [Proof of Claim 5.1] Consider some outcome a ∈ A. Notice that there exists λa ∈ [0, 1] such that
vi(a; t, s−i) = (1− λa) · vi(a; s, s−i) + λa · vi(a; s′, s−i). Namely,

λa =
vi(a; s, s−i)− vi(a; t, s−i)

vi(a; s, s−i)− vi(a; s′, s−i)

Assume towards contradiction that there exist two outcomes a, b ∈ A such that λa ̸= λb. Wlog assume
λa < λb. By convexity of D and monotonicity of vi, there exist xa < xb ∈ [s, s′] such that

vi(xa, s−i) = (1− λa) · vi(s, s−i) + λa · vi(s′, s−i)

vi(xb, s−i) = (1− λb) · vi(s, s−i) + λb · vi(s′, s−i)

By convexity there exists a signal y ∈ (xa, xb), such that, vi(y, s−i) = (vi(xa, s−i) + vi(xb, s−i))/2. Now notice
that vi(a; y, s−i) > vi(a; t, s−i), and vi(b; y, s−i) < vi(b; t, s−i). This is a contradiction since vi is monotone in si.
Hence λa = λb for all a, b ∈ A, proving the claim.

E Local Exclusion under Multi-Parameter Signals

In this section we show an example when local exclusion does not help with truthfulness even in the more general
setting where each agent has multi-signals. Under the multi-parameter signals setting, each agent i has different

signals s
(j)
i for each project j, and the value of any agent i for project j, vi(j; ·), only depends on the signals s(j),

where s(j) = (s
(j)
1 , s

(j)
2 , . . . , s

(j)
n ).7

Recall that under global exclusion, when agent i is excluded (that is, obtains no allocation from the
mechanism), there is no incentive for i to misreport si. However, even with multi-parameter signals, under
local exclusion (i.e., each project j may be associated with different excluded agents Ej) an agent i ∈ Ej may

have an incentive to misreport s
(j)
i .

7Note that, the focus of this paper is the single-parameter signal setting where s
(j)
i = si for all i, j.
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Consider a setting with two agents i ∈ {1, 2}, three projects j ∈ {1, 2}, and k = 1. Only agent 1 has signals

s
(1)
1 , s

(2)
1 ∈ {0, 1}. The valuations of the agents are,

v1(1; s
(1)
1 ) = ε v1(2; s

(2)
1 ) = H · s(2)1 + 1

v2(1; s
(1)
1 ) = H · s(1)1 v2(2; s

(2)
1 ) = 0

Suppose E1 = {1} and E2 = {2}, that is, agent 1 is excluded from project 1 and agent 2 is excluded from

project 2. If s
(1)
1 = 0 to achieve any approximation to the social welfare a deterministic mechanism will always

allocate project 2 (to agent 1), hence agent 1 will misreport s
(1)
1 = 0.
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