
Multi-agent Contracts∗

Paul Dütting
Google Research

Zurich, Switzerland
duetting@google.com

Tomer Ezra
Sapienza University of Rome

Rome, Italy
tomer.ezra@gmail.com

Michal Feldman
Tel Aviv University
Tel Aviv, Israel

Microsoft Research
Herzliya, Israel

mfeldman@tauex.tau.ac.il

Thomas Kesselheim
University of Bonn
Bonn, Germany

thomas.kesselheim@uni-bonn.de

ABSTRACT

We study a natural combinatorial single-principal multi-agent con-
tract design problem, in which a principal motivates a team of
agents to exert e�ort toward a given task. At the heart of our model
is a reward function, which maps the agent e�orts to an expected
reward of the principal. We seek to design computationally e�cient
algorithms for �nding optimal (or near-optimal) linear contracts
for reward functions that belong to the complement-free hierarchy.

Our �rst main result gives constant-factor approximation algo-
rithms for submodular and XOS reward functions, with value and
demand oracles, respectively. It relies on an unconventional use of
“prices” and (approximate) demand queries for selecting the set of
agents that the principal should contract with, and exploits a novel
scaling property of XOS functions and their marginals, which may
be of independent interest.

Our second main result is an Ω(
√
=) impossibility for settings

with = agents and subadditive reward functions, even with demand
oracle access. A striking feature of this impossibility is that it applies
to subadditive functions that are constant-factor close to submodu-
lar. This presents a surprising departure from previous literature,
e.g., on combinatorial auctions.
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1 INTRODUCTION

Contract theory is a core problem in economic theory (c.f. the 2006
“Nobel Prize” to Oliver Hart and Bengt Holmström), which seeks,
using incentive mechanisms, to achieve desirable outcomes in the
presence of unobservable actions. It plays a major role in the design
of markets for e�ort (or services), similar to the role that mechanism
design and auction theory play in the design of markets for goods.
Applications of contract design range from multi-million dollar
markets, such as in�uencer marketing on social media platforms
[e.g., 39], to contracts for social goods, such as government-run
programs to encourage a�orestation/prevent deforestation [e.g.,
2, 37].

At its heart is the hidden-action principal-agent problem [e.g.,
28, 32], in which a principal seeks to incentivize an agent to take a
costly action, whose stochastic outcome determines a reward for the
principal. A contract de�nes monetary transfers from the principal
to the agent based on the observable outcome. The principal’s goal
is to �nd the contract that maximizes her utility (expected reward
minus transfer), when the agent chooses the action that maximizes
his utility (expected transfer minus cost).

In its vanilla version, with a single principal and a single agent,
the problem can be solved in polynomial time by solving one LP for
each action [28]. While this approach can also be applied in more
complex scenarios, its running time will usually be exponential in
the (succinct) representation. Therefore, one has to understand the
structure of optimal contracts in order to obtain computationally
e�cient algorithms for �nding optimal contracts [e.g. 4, 17, 21].

A natural extension of the classic single-principal single-agent
model, are settings where a principal seeks to incentivize a team
of agents [33]. In such scenarios, the complexity arises from the
complex combinatorial structure of dependencies between the agent
actions, and is already compelling when each agent can either
exert e�ort or not [4]. In this work, we provide computationally
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e�cient algorithms and impossibilities for (approximating) the
optimal contract in this multi-agent setting.

As in many economic models, the problem of optimally incen-
tivizing teams of agents boils down to a clean and compelling combi-
natorial optimization problem. The challenge is that, even in cases
where the dependencies between the agent actions exhibit nice
structure, this structure does not transfer to the objective function.

Model – Key ingredients. To state and discuss our results, it will
be useful to describe the key ingredients of the multi-agent hidden-
action principal-agent problem [c.f. 4] that we study in this paper.

In thismodel, a principal interacts with a set� of= agents. Agents
have binary actions: They can either exert e�ort or not. Exerting
e�ort comes with cost 28 ∈ R≥0 for agent 8 . Each subset of agents
( ⊆ � induces a probability distribution over possible outcomes
l ∈ Ω, and the principal associates a reward A (l) ∈ R≥0 with each
possible outcome. The reward function 5 : 2� → R≥0 associates
with each set ( ⊆ � of agents that exert e�ort an expected reward.

Our focus in this work is on a particularly important class of
contracts, so-called linear contracts, and the optimal contract design
problem in that class.

A linear contract consists of a vector U ∈ [0, 1]= ; and specify that
agent 8 should be paid U8 · A (l) for each outcome l ∈ Ω. We say
that a linear contract incentivizes a set of agents ( if for each 8 ∈ (
it holds that U8 · 5 (() −28 ≥ U8 · 5 (( \ {8}) and for each 8 ∉ ( it holds
that U8 · 5 (() ≥ U8 · 5 ((∪{8})−28 . The goal is to �nd a linear contract
U and a set ( such that ( is incentivized by U , and maximizes the
principal’s expected utility given by 6(() = (1 −∑

8∈� U8 ) 5 (().
Linear contracts are arguably the most important class of con-

tracts in practice, and they also exhibit good properties analytically.
In particular, for the important special case of a binary outcome
(e.g., a project that can succeed or fail), linear contracts are in fact
optimal; and for more general outcome spaces, they are known to
be max-min optimal when only the expected reward of each set of
agents is known [17, 20].

1.1 Our Contribution

We study the computational complexity of computing optimal and
near-optimal linear contracts for the multi-agent hidden-action
principal-agent problem for di�erent classes of “complement-free”
reward functions [36].

As it turns out, moving from a single-agent to a multi-agent
setting signi�cantly complicates matters. Even for the simplest
class of reward functions — additive reward — it is NP-hard to
compute the optimal contract; but the problem admits an FPTAS
(see Appendix A). As we progress in the hierarchy, the problem
becomes signi�cantly more challenging.

Our �rst main result concerns submodular, and in fact, the more
general class of XOS reward functions (for de�nitions see Section 2).
We show that for both of these classes there exist algorithms that
provide constant-factor approximation to the optimal contract.

Our result relies on an uncoventional use of “prices” and (ap-
proximate) demand queries for selecting the set of agents that the
principal should seek to incentivize, and exploits a novel scaling
property for XOS functions and their marginals, which may be of
independent interest.

Main Result 1 (Theorem 3.1): For any multi-agent setting with
submodular reward function 5 , there exists a polynomial-time$ (1)-
approximation to the optimal contract, that uses a value oracle. If 5
is XOS, an $ (1)-approximation can be achieved using demand and
value oracles.

We complement this result by showing that, for the broader class
of subadditive functions, the following impossibility applies:

MainResult 2 (Theorem 4.1): For any polynomial-time algorithm,
with demand or value oracles, there exists a multi-agent setting with
subdditive reward function 5 , such that the algorithm achieves no
better than Ω

(√
=
)
-approximation to the optimal contract, where

= is the number of agents.

This impossibility result is particularly interesting in light of the
fact that it applies to a subadditive function that is “constant-factor
close" to submodular: It can be approximated by a submodular
function to within a factor of 2. Yet, the gap between the optimal
contract that can be found in polynomial time and the optimal
contract jumps from constant to Ω(

√
=).

So, on the one handwe show that—just like in pure combinatorial
optimization and algorithmic mechanism design—submodularity,
or more generally being XOS, enables e�cient computation of near-
optimal contracts. On the other hand we show that—in stark con-
trast to these closely related domains, where usually being within
a factor of V of submodular or XOS implies that the bounds only
deteriorate by a factor of $ (V) [e.g., 10, 26]—in our case the bound
does not degrade gracefully with the closeness to submodularity.

Our positive result is “tight" in an additional way: In Theorem 4.9
we show that it is impossible to obtain a better than constant ap-
proximation for XOS functions (even with demand queries).

1.2 Our Techniques

In Section 2, we observe that the underlying optimization problem
we need to solve is as follows. Given a cost 28 ≥ 0 for each agent 8
and a reward function 5 : 2� → R≥0, our goal is to maximize the
function 6 : 2� → R de�ned by

6(() =
(
1 −

∑
8∈(

28

5 (8 | ( \ {8})

)
5 (().

The di�culty is that, even in cases where 5 is highly structured
such as submodular, XOS, or subadditive (see de�nitions in Sec-
tion 2), this structure does not carry over to 6. For example, even
in cases where 5 is non-negative monotone and submodular, the
induced 6 will usually not be monotone and take negative values.
If 5 is only XOS, 6 may even not be subadditive.

Constant-factor approximations for submodular and XOS. Let (★

be a set that maximizes 6((★). Our goal is to �nd a set ( such that
6(() ≥ constant ·6((★). For the purpose of conveying the intuition
behind our approach, assume in the following that 5 ((★) is known
to the algorithm (but not (★ itself) and the contribution of a single
agent is negligible. In the technical sections, these assumptions will
not be necessary.

A key ingredient in our proof is a pair of lemmas that draw
connections between the value of the optimal solution and its
marginals to the costs. Speci�cally, in Lemma 3.3, we show that
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∑
8∈(★
√
28 ≤

√
5 ((★). In Lemma 3.4, we show that if for a set ( we

have 5 (8 | ( \ {8}) ≥
√
228 5 (() for every 8 ∈ ( , then 6(() ≥ 1

2 5 (().
These observations give rise to guiding the choice of our set (

by de�ning a “price” for each agent. Namely, let ?8 =
1
2

√
28 5 ((★)

for each agent 8 and consider the demand set ) , which is de�ned to
maximize 5 () ) −∑

8∈) ?8 . We now have 5 () ) ≥ 5 () ) −∑
8∈) ?8 ≥

5 ((★)−∑8∈(★ ?8 ≥ 1
2 5 ((★) using the de�nition of a demand set and

Lemma 3.3. By de�nition, the marginal contribution of every agent
in the demand set must exceed its price, namely 5 (8 | ) \ {8}) ≥
?8 =

1
2

√
28 5 ((★). This condition looks almost like the one that is

necessary to invoke Lemma 3.4. However, note that we only have a
lower bound on 5 () ), no upper bound. Therefore possibly 5 () ) is
much larger than 5 ((★).

To deal with this, we establish a novel scaling property of XOS
functions, showing that one can scale down the value of any set )
to essentially any level, by removing some of its elements, while
keeping the marginals of the remaining elements su�ciently high
with respect to their original marginals. Namely, for every set )
and every Ψ < 5 () ), one can compute a subset * ⊆ ) such that
1
2Ψ ≤ 5 (* ) ≤ Ψ and 5 (8 | * \ {8}) ≥ 1

2 5 (8 | ) \ {8}). While
this property is not too surprising for submodular functions, for
XOS functions this is far from obvious, given the apparent lack of
control over marginals, and may be of independent interest. Setting
Ψ =

1
32 5 ((★), we can invoke Lemma 3.4 because with this choice

5 (8 | * \ {8}) ≥ 1
2 5 (8 | ) \ {8}) ≥

1
2?8 =

1
4

√
28 5 ((★) ≥

√
228 5 (* )

and conclude that 6(* ) ≥ 1
2 5 (* ) ≥

1
128 5 ((★) ≥

1
1286((★).

Inapproximability results for subadditive and XOS. To show the
impossibility result for subadditive reward functions 5 we follow
the common approach of “hiding a good set” (see, e.g., [7]). We �rst
construct a subadditive function 5 on subsets ( ⊆ � of = agents.
It has the property that 6(() = $ (1) for |( | <

√
= and 6(() ≤ 0

if |( | ≥
√
=. That is, the optimal principal utility is constant and

any attempt to incentivize more than
√
= agents would result in a

negative (or zero) utility.
We then slightly modify 5 by choosing a random set )★ of size

=
2 + 1, and increasing its value. Monotonicity and subadditivity of
5 are preserved by this change. This change signi�cantly increases
the principal’s utility from the set )★ to 6()★) = Ω(

√
=). At the

same time, it does not increase the utility from any other set, so
that, not only is )★ the unique optimal set, but it is also the only
one that approximates it well. The principal’s problem thus boils
down to �nding )★.

It then remains to show that)★ cannot be found by a polynomial
number of (demand or value) queries. We then use the fact that the
modi�ed function is almost identical to the original (symmetric)
one to show that every (demand or value) query reveals information
only on a small set of candidates for )★, and thus every algorithm
that uses only a polynomial number of queries, cannot guess )★

with high enough probability, resulting in an Ω(
√
=) approximation

to the principal’s optimal utility.
Our proof providing a constant lower bound for XOS follows

the same approach, but the additional structure of XOS functions
limits how big the gap between 6() ) and 6()★) can be.

1.3 Related Work

Optimizing the e�ort of others. Our work is part of an emerging
frontier in Algorithmic Game Theory on optimizing the e�ort of
others (see, e.g., the STOC 2022 TheoryFest workshop with the
same title). This includes work on algorithmic contract design [e.g.,
17, 20, 21], strategic classi�cation [e.g., 8, 35], optimal scoring rule
design [e.g., 14, 38], and delegation [e.g., 9, 34].

Combinatorial optimization and auctions. A number of funda-
mental papers has explored combinatorial optimization problems
with “complement-free” set functions. In a landmark paper, Feige
[23] gives constant-factor approximation algorithms for the welfare
maximization problem in combinatorial auctions with submodular,
XOS, and subadditive bidders. An exciting line of work seeks to
understand whether it is possible to match these bounds with truth-
ful mechanisms, with the current state of the art being polyloglog
approximations [3, 16]. Complement-free valuations also play a
crucial role in combinatorial auctions with item bidding, where sub-
additive valuations enable constant-factor Price of Anarchy bounds
[10, 15, 25, 41]; and the prophet inequalities/posted-price literature,
where constant-factor approximations are known for XOS and the
state of the art for subadditive is a loglog approximation [18, 19, 26].
There are also polynomial-time constant-factor approximation re-
sults for truthful revenue maximization with unit-demand bidders
[13], additive bidders [42], and XOS bidders [11].

Computational approaches to contracts. A computational approach
to contracts was pioneered in [4, 24] and [20].

Most relevant for us is work on combinatorial contracts, which
can be divided into three categories, depending on whether it con-
cerns exponentially large outcome spaces [21], taking sets of actions
[17], or settings with multiple agents [4–6, 22]. Out of these, the
most closely related papers to our work are [17] and [4, 22].

Dütting et al. [17] study a single-principal single-agent setting,
where the agent can take any subset of = actions. The main result
is a polynomial-time (in =) algorithm for gross-substitutes reward
functions. They also show NP-hardness for general submodular
reward functions (with value oracle access). While both [17] and
the present paper deal with a reward function that maps any subset
of = actions to some expected reward, the induced optimization
problems are fundamentally di�erent: In [17] a single agent chooses
a subset of = actions. A contract is de�ned by a single parameter
U , and the agent chooses a set of actions that is better than any
other set of actions. In particular, not every set of actions can be
incentivized. Here, in contrast, each one of the = agents makes
a binary choice over actions (exert e�ort or not), thus an action
pro�le corresponds to a subset of the = agents. A contract is now
de�ned by a vector (U1, . . . , U=). Typically, every set of agents can
be incentivized, so there are exponentially many feasible solutions.
The challenge is to �nd a feasible solution of high value.

Babaio� et al. [4] and Emek and Feldman [22] study the same
model studied here—= agents with binary actions. They assume that
each agent succeeds in his individual task with a certain probability,
depending on whether he exerts e�ort or not; then a Boolean func-
tion maps individual successes and failures to a success or failure
of the project. Babaio� et al. [4] show that for Boolean functions
represented by read-once networks the optimal contract problem
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is #P-complete, and give a polynomial-time algorithm for AND
networks. Emek and Feldman [22] show that for OR networks (a
special case of submodular) the problem is NP-hard, but admits
an FPTAS. Our work signi�cantly expands the landscape of this
model, by considering general submodular, XOS, and subadditive
reward functions.

Finally, recent work has considered settings exhibiting both
hidden-action and hidden-type, through a computational lens in
[1, 12, 30].

1.4 Organization

We formally set up the model in Section 2. Our main positive result—
the constant-factor approximation guarantees for submodular and
XOS reward functions—appear in Section 3. We prove the impossi-
bility results for subadditve and XOS reward functions in Section 4.
Our results for additive reward functions appear in Appendix A.

2 PRELIMINARIES

Themulti-agent hidden-action principal-agent setting. In ourmodel
a single principal interacts with a set of = agents � = [=] =

{1, . . . , =}. We focus on the following combinatorial binary-action
setup: Agents can either take action (exert e�ort) or not. Taking
action comes with a cost 28 ∈ R≥0 for agent 8 .

There is a set of outcomes Ω. To each subset of agents ( ⊆ � that
exerts e�ort we associate a probability distribution @( : Ω → [0, 1]
over outcomes. The principal derives reward A (l) ∈ R≥0 from
outcome l ∈ Ω. The interpretation is that if the set of agents (
exerts e�ort, then an outcome l is drawn from @( , and the reward
A (l) goes to the principal.

We de�ne the reward function 5 : 2� → R≥0 as the mapping
from a given set of agents that exert e�ort to expected reward. We
generally assume that 5 is monotone increasing so that for any two
sets of agents (, ( ′ with ( ⊆ ( ′ ⊆ � it holds that 5 (() ≤ 5 (( ′). We
also assume that 5 is normalized in the sense that 5 (∅) = 0. We
write 5 (8 | () := 5 (( ∪ {8}) − 5 (() for the marginal contribution of
8 ∈ � to ( ⊆ �.

One of the de�ning feature of the model is that the principal
cannot directly observe the actions chosen by the agents, only their
outcome, which is determined stochastically based on the actions.

Moral hazard and contracts. A main challenge in our problem
is what economists refer to as moral hazard: In and by itself the
agents have no interest in exerting e�ort, as exerting e�ort is costly
and the bene�ts from that e�ort go to the principal.

The principal therefore designs a contract C : Ω → R=≥0, which
maps each outcome to a non-negative vector of transfers C (l) =
(C1 (l), . . . , C= (l)) to the agents. I.e., C8 (l) is the transfer to agent 8
under outcome l .

A particularly important class of contracts in practice, and the
class of contracts we focus on are linear contracts. A linear contract

is de�ned by a vector U = (U1, . . . , U=), and sets C8 (l) = U8A (l) for
all 8 ∈ � and l ∈ Ω. Thus, when ( ⊆ � is the set of agents that
exert e�ort, the expected transfer to agent 8 is U8 5 ((). Note that
this only depends on the expected reward 5 ((), and not the details
of the distribution.

Focusing on linear contracts is without loss of generality in the
important special case of a binary outcome space Ω = {0, 1}, where

l = 0 stands for “failure” and comes with no reward (i.e., A (0) = 0)
and l = 1 stands for “success” and comes with reward A (1) ∈ R≥0.
In this case an appropriately scaled 5 can be interpreted as success
probability function.

Formore general outcome spaces it is known that linear contracts
are max-min optimal when only the expected rewards 5 (() for each
( ⊆ � (and not the full details of the underlying distributions) are
known [17, 20].

Utility functions and equilibria. Consider a linear contract U ,
and let ( be the set of agents that exert e�ort. Then the princi-

pal’s utility is given by (1 −∑
8∈� U8 ) 5 ((); while agent 8’s utility is

U8 5 (() −1 [8 ∈ (] ·28 , where 1 [8 ∈ (] = 1 if 8 ∈ ( and 1 [8 ∈ (] = 0

otherwise. Note that this means that agent 8 is paid U8 5 (() irrespec-
tive of whether 8 ∈ ( , while the cost 28 is only incurred when 8 ∈ (
(i.e., agent 8 exerts e�ort).

To analyze linear contracts, we therefore consider the (pure)
Nash equilibria of the induced game among the agents. We capture
Nash equilibria through the following de�nition. We say that a
linear contract U incentivizes a set of agents ( ⊆ � to exert e�ort if

U8 5 (() − 28 ≥ U8 5 (( \ {8}) for all 8 ∈ ( , and
U8 5 (() ≥ U8 5 (( ∪ {8}) − 28 for all 8 ∉ (.

Since equilibria will generally not be unique, we will think of
contracts as consisting of a vector U and a set ( that is icentivized
by U which should exert e�ort.

The contract design problem. For a �xed set of agents ( , the best
way for the principal to incentivize the set (if it can be incentivized
at all), is via

U8 =
28

5 (() − 5 (( \ {8}) =
28

5 (8 | ( \ {8}) for all 8 ∈ ( and

U8 = 0 for all 8 ∉ ( ,

where we interpret 28
5 (8 |(\{8 }) as zero if 28 = 0 and 5 (8 | ( \ {8}) = 0

and as in�nity when 28 > 0 and 5 (8 | ( \ {8}) = 0. The principal
thus tries to solve max( ∈2� 6(() where

6(() :=
(
1 −

∑
8∈(

28

5 (8 | ( \ {8})

)
5 (().

Let (★ be the optimal choice of agents, i.e., the set that maximizes
6. We say that ( is a V-approximation (where V ≥ 1) if V · 6(() ≥
6((★).

Classes of reward functions 5 . We focus on reward functions
5 : 2� → R≥0 that belong to one of the following classes of
complement-free set functions [36]:

• Set function 5 is additive if there exist values E1, . . . , E= ∈
R≥0 such that 5 (() = ∑

8∈( E8 .
• Set function 5 is submodular if for any two sets (, ( ′ ⊆ �

with ( ⊆ ( ′ and any 8 ∈ � it holds that 5 (8 | () ≥ 5 (8 | ( ′).
• Set function 5 is XOS if there exists a collection of additive
functions {08 : 2� → R≥0}8=1,...,: such that for each set ( ⊆
� it holds that 5 (() = max8=1,...,: 08 (() = max8=1,...,:

∑
9 ∈( 08 9 .

Given an XOS function 5 and a set ( ⊆ �, there exists an ad-
ditive function 08 such that 08 (() = 5 (() and 08 () ) ≤ 5 () )
for all ) ⊆ �; this function is called the additive supporting
function of 5 on ( .
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• Set function 5 is subadditive if for any two sets (, ( ′ ⊆ � it
holds that 5 (() + 5 (( ′) ≥ 5 (( ∪ ( ′).

It is well known that submodular ⊂ XOS ⊂ subadditive and all
containment relations are strict [36].

Primitives for accessing 5 . As is common in the combinatorial
optimization literature involving set functions, we assume two
primitives for accessing 5 :

• A value oracle for 5 is given ( ∈ 2� and returns 5 (().
• A demand oracle for 5 is given a vector of prices
? = (?1, . . . , ?=) ∈ R≥0 and returns a set ( ∈ 2� that maxi-
mizes 5 (() −∑

9 ∈( ? 9 .

Both value and demand queries are considered standard in com-
binatorial optimization problems over set functions. In markets for
goods (e.g., combinatorial auctions), a demand query corresponds
to the best bundle to purchase given item prices. In our combi-
natorial contracting problem, a demand query corresponds to the
best set of actions to take, had the principal to perform the actions
herself. Demand oracles have proven useful in previous studies on
combinatorial contracts, see [17].

Auxiliary lemma for XOS functions. For our main result on XOS
reward functions we need the following lemma, which generalizes
a well-known property of submodular functions to XOS functions.

Lemma 2.1. [Cf. Lemma 1 in [27]] For any XOS function 5 and

any sets ( ⊆ ) , ∑
8∈(

5 (8 | ) \ {8}) ≤ 5 (() .

Proof. Let 0 be an additive supportive function for 5 on ) so
that 0() ) = 5 () ) and 0() ′) ≤ 5 () ′) for all ) ′ ⊆ ) . Then, for any
8 ∈ ) , it holds that

5 (8 | ) \ {8}) = 5 () ) − 5 () \ {8}) ≤ 0() ) − 0() \ {8}) = 0({8}) .

Summing over all 8 ∈ ( we obtain∑
8∈(

5 (8 | ) \ {8}) ≤
∑
8∈(

0({8}) = 0(() ≤ 5 ((),

as claimed. □

3 CONSTANT FACTOR FOR SUBMODULAR
AND XOS

In this section, we present our main positive results: polynomial-
time constant-factor approximation algorithms for submodular and
XOS multi-agent combinatorial contracts.

Theorem 3.1. (1) For submodular 5 and = agents, it is possible

to compute an $ (1)-approximation to the optimal contract in

polynomial time using value queries.

(2) For XOS 5 and = agents, it is possible to compute an $ (1)-
approximation to the optimal contract in polynomial time

using value and demand queries.

Recall that we use 6 : 2� → R to denote the principal’s util-
ity as a function of the set of incentivized agents. I.e., 6(() :=

5 (()
(
1 −∑

8∈(
28

5 (8 |(\{8 })

)
. Let (★ be the optimal set of agents, i.e.,

the set that maximizes 6.

Below we present the full argument for submodular/XOS reward
functions assuming value and demand oracle access to the reward
function. The result to submodular reward functions with only
value oracle access requires only small modi�cations and relies on
known algorithms for computing approximate demand sets [31, 40].
We defer the details of this extension to Appendix B.

3.1 Decomposing the Benchmark

Our �rst lemma provides a useful decomposition of the benchmark
by showing that 6((★) is upper bounded by the sum of 5 ((★ ∩�′),
where �′ = {8 ∈ � | 28

5 ( {8 }) ≤
1
2 }, and max8∈� 6({8}) — the best

contract for incentivizing a single agent.
This may look innocent, but is not, because—as we already ob-

served earlier—generally none of the nice structural properties of
5 (such as non-negativity, monotonicity, submodularity or being
XOS) carry over to 6.

An important consequence of the lemma is that, since it’s easy
to �nd the best contract for incentivizing a single agent, we can
focus on the non-trivial task of �nding a contract that approximates
5 ((★ ∩�′).

Lemma 3.2. If 5 is XOS (or, more generally, subadditive), then

6((★) ≤ 5 ((★ ∩�′) +max{0,max
8∈�

6({8})}.

Proof. If 6((★) = 0, then the claim is trivial. Otherwise, we �rst
prove that |(★ \�′ | ≤ 1. This is since,

0 < 6((★) = 5 ((★)
(
1 −

∑
8∈(★

28

5 (8 | (★ \ {8})

)

≤ 5 ((★) ©«
1 −

∑
8∈(★\�′

28

5 ({8})
ª®¬
≤ 5 ((★)

(
1 − |(

★ \�′ |
2

)
,

where the second inequality follows from subadditivity of 5 which
implies that 5 (8 | (★ \ {8}) = 5 ((★) − 5 ((★ \ {8}) ≤ 5 ({8}). Since
5 ((★) > 0, this implies that |(★ \�′ | ≤ 1.

If |(★\�′ | = 0, the statement follows since6((★) = 6((★∩�′) ≤
5 ((★ ∩�′). Else, let 8★ be the single item in (★ \�′. We have

6((★) ≤ 5 ((★ ∩�′) + 5 ({8★})
(
1 − 28★

5 (8★ | (★ \ {8★})

)

≤ 5 ((★ ∩�′) +max
8∈�

6({8}) .

The �rst inequality follows from subadditivity of 5 , implying that
5 ((★) ≤ 5 ((★ ∩ �′) + 5 ({8★}), and by decreasing the payments.
The second inequality follows again by subadditivity of 5 , implying
that 5 (8★ | (★ \ {8★}) ≤ 5 ({8★}). This concludes the proof. □

3.2 Relaxing the Problem

We next present two crucial lemmas that draw connections between
rewards, marginal rewards, and costs. This pair of lemmas relaxes
the problem and motivates our approach for �nding a good set of
agents to incentivize in a contract via prices and demand queries.

The next lemma shows that for the optimal set of agents (★, the
costs are not too high. Clearly, for the optimal set of agents we
must have

∑
8∈(★ 28 ≤ 5 ((★) because otherwise the reward cannot

compensate the incurred cost. In the multi-agent hidden-action
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setting with XOS rewards, we can strengthen this observation as
follows.

Lemma 3.3. If 5 is XOS, then for all ( ⊆ (★ we have∑
8∈(

√
28 ≤

√
5 (() .

Proof. Note that 5 (8 | (★ \ {8}) > 0 for all 8 ∈ (★ with 28 > 0

because otherwise 6((★) = −∞, whereas 6(∅) = 0, contradicting
the optimality of (★.

Let’s �rst consider the case where 5 ((★) = 0. In this case, we
have 5 (8 | (★ \ {8}) ≤ 5 ({8}) ≤ 5 ((★) = 0 for all 8 ∈ (★. This
means that 28 = 0 for all 8 ∈ (★, implying the statement.

So consider the case where 5 ((★) > 0. By optimality 6((★) ≥ 0,
so

6((★) = 5 ((★)
(
1 −∑

8∈(★
28

5 (8 |(★\{8 })

)
≥ 0

=⇒ ∑
8∈(★

28
5 (8 |(★\{8 }) ≤ 1,

where we used that 5 ((★) > 0 for the implication.

For 8 ∈ ( let G8 =
√

28
5 (8 |(★\{8 }) and ~8 =

√
5 (8 | (★ \ {8}). This

is well-de�ned because 28
5 (8 |(★\{8 }) ≥ 0 by our initial observation.

The Cauchy-Schwarz inequality states(∑
8∈(

G8~8

)2
≤

(∑
8∈(

G28

) (∑
8∈(

~28

)
.

Using this we obtain(∑
8∈(

√
28

)2
≤

(∑
8∈(

28

5 (8 | (★ \ {8})

)

︸                     ︷︷                     ︸
≤1

(∑
8∈(

5 (8 | (★ \ {8})
)
≤ 5 ((),

where the last inequality holds by Lemma 2.1. Taking the square
root on both sides of the inequality establishes the claim. □

The next lemma shows that if for some set ( , the marginal of
every agent 8 is not too small, then the principal pays at most half
of the reward as transfers. Therefore, our approach will be to �nd
a set ( for which 5 (() is high and also all marginals ful�ll these
constraints.

Lemma 3.4. If 5 is XOS, then for any set ( that ful�lls 5 (() > 0

and

5 (8 | ( \ {8}) ≥
√
228 5 (() for all 8 ∈ ( ,

we have 6(() ≥ 1
2 5 (().

Proof. Consider any 8 ∈ ( . If 28 > 0, note that we have to have
5 (8 | ( \ {8}) > 0. So

5 (8 | ( \ {8}) ≥
√
228 5 (()

is equivalent to

28

5 (8 | ( \ {8}) ≤
1

2

5 (8 | ( \ {8})
5 (() .

For any 8 ∈ ( with 28 = 0, we de�ned 28
5 (8 |(\{8 }) = 0, even when

the denominator is zero; so also 28
5 (8 |(\{8 }) ≤

1
2
5 (8 |(\{8 })

5 (() because

5 (8 | ( \ {8}) ≥ 0. Summing over all 8 ∈ ( we obtain∑
8∈(

28

5 (8 | ( \ {8}) ≤
1

2

∑
8∈( 5 (8 | ( \ {8})

5 (() ≤ 1

2
,

where the second inequality holds by Lemma 2.1. Therefore

6(() =
(
1 −

∑
8∈(

28

5 (8 | ( \ {8})

)
5 (() ≥ 1

2
5 ((). □

3.3 A Scaling Property of XOS Functions and
Their Marginals

The other crucial ingredient in our argument for �nding a contract
is a novel scaling property of XOS functions and their marginals,
which roughly says that we can scale down the reward 5 () ) of
any set ) to whatever level we wish, while also ensuring that the
marginals of the elements that remain stay high (with respect to
the original marginals).

This property is not too suprising for submodular 5 , and is in-
deed easy to obtain for this class of functions: Consider iteratively
dropping elements from ) one by one to get down to the desired
level. Then, by submodularity, the marginals of the items that re-
main can only go up. For XOS 5 , however, this is far from obvious
(given the apparent lack of control over marginals), and may be of
independent interest.

Lemma 3.5. Let 5 : 2� → R≥0 be an XOS function. Given a set

) ⊆ �, and parameters X ∈ (0, 1] and 0 ≤ Ψ < 5 () ), Algorithm 1

runs in polynomial time with value oracle access to 5 and �nds a set

* ⊆ ) such that

(1 − X)Ψ ≤ 5 (* ) ≤ Ψ +max
8∈)

5 ({8}), (1)

and

5 (8 | * \ {8}) ≥ X 5 (8 | ) \ {8}) for all 8 ∈ * . (2)

ALGORITHM 1: Scaling sets for XOS

Data: An XOS function 5 : 2� → R≥0, a set ) , parameters
0 ≤ Ψ < 5 () ) and X ∈ (0, 1]

Result: A set* ⊆ ) satisfying Equations (1) and (2)
Let )0 be an inclusion-wise minimal subset of ) with
5 ()0) = 5 () ) ⊲ I.e., 5 (() < 5 ()0),∀( ⊊ )0

for C = 1, . . . , |)0 | do
Let 8C = argmin8∈)C−1

5 (8 |)C−1\{8 })
5 (8 |)0\{8 })

Let )C = )C−1 \ {8C }
Let XC =

5 (8C |)C )
5 (8C |)0\{8C })

end

Let 9★ = min{ 9 | 5 ()9 ) ≤ Ψ}
Let :★ = min{: | 5 (): ) ≤ (1 − X) 5 ()9★−1)}
Let C★ = argmaxC ∈{ 9★,...,:★ } XC
return* = )C★−1
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Proof. It is easy to see that Algorithm 1 can be implemented
in polynomial time with value oracle access to 5 ; in particular, )0
can be obtained by iteratively dropping any element from ) whose
removal does not decrease the value until reaching a point where
no such element exists. So we focus on showing that it �nds a set
* that satis�es (1) and (2).

We begin by arguing that the algorithm is well de�ned. First
note that 5 (8 | )0 \ {8}) > 0 for all 8 ∈ )0 because otherwise
)0 would not be inclusion-wise minimal. Furthermore, we have
to argue that the indices 9★ and :★ as de�ned in the algorithm
exist and satisfy 1 ≤ 9★ ≤ :★ ≤ |)0 |. To this end observe that
5 () ) = 5 ()0) ≥ 5 ()1) ≥ . . . ≥ 5 () |)0 |) and ) |)0 | = ∅, so 5 () |)0 |) =
0. Therefore there must be a smallest 9 with 0 ≤ 9 ≤ |)0 | such
that 5 ()9 ) ≤ Ψ. This is 9★. Moreover, since Ψ < 5 () ) = 5 ()0), it
must be that 9★ ≥ 1. Hence there must also be a smallest : with
9∗ − 1 ≤ : ≤ |)0 | such that 5 (): ) ≤ (1 − X) 5 ()9★−1). This is :★.
Finally, since X > 0, and 5 ()9★−1) > Ψ ≥ 0, this :★ must satisfy
:★ ≥ 9★.

It remains to show that* = )C★−1 ful�lls the respective proper-
ties.

By de�nition, it holds that

5 ()9★−1) = 5 ():★) +
∑

C ∈{ 9★,...,:★ }
5 (8C | )C ) .

By rearranging and replacing 5 (8C | )C ) by XC · 5 (8C | )0 \ {8C }) we
get that

5 ()9★−1) − 5 ():★) =
∑

C ∈{ 9★,...,:★ }
XC · 5 (8C | )0 \ {8C })

≤
∑

C ∈{ 9★,...,:★ }
XC★ · 5 (8C | )0 \ {8C })

≤ XC★ · 5 ({8 9★, . . . , 8:★})
≤ XC★ · 5 ({8 9★, . . . , 8 |)0 |}) = XC★ · 5 ()9★−1),

where the �rst inequality is by the de�nition of C★, the second
inequality is by Lemma 2.1, and the third inequality is by mono-
tonicity. Thus, for all 8 ∈ * = )C★−1,

5 (8 | )C★−1 \ {8})
5 (8 | )0 \ {8})

≥ XC★ ≥
5 ()9★−1) − 5 ():★)

5 ()9★−1)

= 1 − 5 ():★)
5 ()9★−1)

≥ 1 −
(1 − X) 5 ()9★−1)

5 ()9★−1)
= X,

where the �rst inequality holds by de�nition of 8C★ and XC★ . There-
fore, in order to establish Equation (2), it remains to show that
5 (8 | )0 \ {8}) ≥ 5 (8 | ) \ {8}). Indeed, since 5 ()0) = 5 () ) and
)0 ⊆ ) , monotonicity of 5 implies that

5 (8 | )0\{8}) = 5 ()0)−5 ()0\{8}) ≥ 5 () )−5 () \{8}) = 5 (8 | ) \{8}) .

To prove Equation (1) observe that 5 ()C★−1) ≥ 5 ():★−1) ≥
(1 − X) 5 ()9★−1) ≥ (1 − X)Ψ, and that 5 ()C★−1) ≤ 5 ()9★−1) ≤
5 ()9★) +max8∈) 5 ({8}) ≤ Ψ +max8∈) 5 ({8}). □

3.4 Computing a Good Set via a Demand Oracle

We next present a subroutine that formalizes the argument outlined
in the introduction that if we knew the value of 5 ((★∩�′), then by
running a demand query at appropriately chosen prices and using

the scaling property of XOS functions from the previous section we
can �nd a contract that constant-factor approximates 5 ((★ ∩�′).

The actual argument is a bit more complicated than what we
sketched before as it has to deal with the fact that we don’t know
the value of 5 ((★ ∩ �′); and that we cannot simply ignore the
contribution of individual agents.

ALGORITHM 2: Approximately optimal contract given
an estimate of 5 ((★∩�′)
Data: An XOS function 5 : 2� → R≥0, costs {28 }8∈� , an

estimate ~̃ ≥ 0 of 5 ((★ ∩�′)
Result: A set* ⊆ �′

Let Ψ =
~̃
32 −max8∈�′ 5 ({8}).

For every 8 ∈ �′, let ?8 = 1
2 ·

√
28 · ~̃ (?8 = ∞ for 8 ∈ � \�′)

Let ) be a demand set with prices ?8 over the set �′

if 0 < Ψ < 5 () ) then
* ← the output of Algorithm 1 on (5 ,) ,Ψ, X =

1
2 )

else
* ← ∅

end

return U

Lemma 3.6. Algorithm 2 runs in polynomial time with access to a

demand and value oracle to 5 . If ~̃ ≤ 5 ((★∩�′), then the set* ⊆ �′

that it returns satis�es

6(* ) ≥ max

{
~̃

128
− max8∈�′ 5 ({8})

4
, 0

}
.

Proof. Algorithm 2 runs in polynomial time with access to a
demand and value oracle to 5 , because it issues a single demand
query to 5 and makes at most one call to Algorithm 1 which runs
in polynomial-time with value oracle access to 5 .

We next prove the lower bound on 6(* ), under the assumption
that ~̃ ≤ 5 ((★∩�′). If Ψ ≤ 0 then the algorithm returns the empty
set, which satis�es the claim. So consider the case Ψ > 0. In this
case we have

5 () ) ≥ 5 () ) −
∑
8∈)

?8

≥ 5 ((★ ∩�′) −
∑

8∈(★∩�′
?8

= 5 ((★ ∩�′) −
√
~̃

2
·

∑
8∈(★∩�′

√
28

≥ 5 ((★ ∩�′) − 1

2

√
5 ((★ ∩�′) · ~̃

≥ 1

2
· 5 ((★ ∩�′), (3)

where the �rst inequality holds since the prices are positive, the
second inequality uses that ) is a demand set over the set �′, the
third inequality is by Lemma 3.3, and the last inequality holds
because ~̃ ≤ 5 ((★ ∩�′).

Furthermore, note that, as ) is a demand set, we have to have
5 (8 | ) \ {8}) ≥ ?8 for all 8 ∈ ) (because otherwise it would be
bene�cial to remove 8).
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Now, since Ψ = ~̃/32 −max8∈�′ 5 ({8}) > 0, we must have ~̃ > 0

and hence ~̃/2 > ~̃/32 ≥ Ψ. This shows

5 () )
(3)
≥ 1

2
· 5 ((★ ∩�′) ≥ ~̃

2
> Ψ.

By Lemma 3.5, the set* ⊆ ) therefore ful�lls

5 (* ) ≥ (1 − X) Ψ =
1

64
~̃ − 1

2
max
8∈)

5 ({8}) ≥ 1

64
~̃ − 1

2
max
8∈�′

5 ({8}) .

Furthermore,* ful�lls

5 (* ) ≤ Ψ +max
8∈)

5 ({8}) ≤ ~̃

32
(4)

and for all 8 ∈ *

5 (8 | * \ {8}) ≥ X 5 (8 | ) \ {8}) = 1

2
· 5 (8 | ) \ {8}) . (5)

We conclude that, for all 8 ∈ * , we have

5 (8 | * \ {8})
(5)
≥ 1

2
· 5 (8 | ) \ {8}) ≥ 1

2
· ?8

=
1

4
·
√
28~̃ =

√
228

~̃

32

(4)
≥

√
228 5 (* ) .

So, Lemma 3.4 implies 6(* ) ≥ 1
2 5 (* ). In combination, we obtain

6(* ) ≥ 1

2
5 (* ) ≥ 1

2

(
1

64
~̃ − 1

2
max
8∈�′

5 ({8})
)
,

as claimed. □

3.5 Putting It All Together

We are �nally in a position to wrap up our argument. Below we
show that Algorithm 3 achieves a constant-factor approximation
to 6((★) for XOS reward function 5 , and runs in polynomial time
with access to a demand and a value oracle to 5 .

The idea is simple: Try out all contracts that incentivize a sin-
gle agent; and use the subroutine from the previous section with
polynomially many guesses for the value of 5 ((★∩�′) to obtain ad-
ditional candidate sets. Argue that for the right guess of 5 ((★∩�′)
the better of the best contract that incentivizes a single agent, and
the candidate set * from the subroutine for this guess yields the
desired approximation.

ALGORITHM 3: Approximate optimal contract for XOS

Data: An XOS function 5 : 2� → R≥0, costs {28 }8∈� ,
parameter b > 1

Let C = {{8} | 8 ∈ �} ∪ {∅}
Let �′ = {8 ∈ � | 28

5 ( {8 }) ≤
1
2 }

if �′ ≠ ∅ ∧max8∈�′ 5 ({8}) > 0 then
Let G = max8∈�′ 5 ({8})/2
for 9 = 0, .., ⌈logb 2=⌉ do

Let G 9 = G · b 9
* ( 9) ← the output of Algorithm 2 on
(5 , {28 }8∈�, �′, ~̃ = G 9 )

C ← C ∪ {* ( 9) }
end

end

return argmax( ∈C 6(()

Proof of Theorem 3.1. We show that Algorithm 3 achieves the
claims in the theorem for XOS reward functions 5 , assuming that
we have access to a demand and a value oracle to 5 . We present
details on how to obtain the result for submodular reward functions
5 when we only have value oracle access to 5 in Appendix B.

We begin by observing that, for any b > 1, Algorithm 3 runs
in polynomial time with access to a demand and a value oracle to
5 , because we make only polynomially many calls to Algorithm 2,
which itself runs in polynomial time with demand/value oracle
access to 5 .

We next show that Algorithm 3 obtains an approximation guar-
antee of 1/(256b +2) which tends to 1/258 as b → 1. To this end, we
distinguish between two cases. The �rst case is that 5 ((★ ∩�′) ≤
128b ·max{0,max8∈� 6({8})}. Then by Lemma 3.2

6((★) ≤ 5 ((★ ∩�′) +max{0,max
8∈�

6({8})}

≤ (128b + 1) ·max{0,max
8∈�

6({8})}.

So, the best single action (or the empty set) gives at least an approx-
imation of 1

128b+1 , which completes the proof of the theorem for

this case.
In the other case, we have

5 ((★ ∩�′) > 128b ·max{0,max
8∈�

6({8})}.

So, in particular, we need to have �′ ≠ ∅ and max8∈�′ 5 ({8}) >
0. Furthermore, 6({8}) ≥ 1

2 5 ({8}) for all 8 ∈ �′, resulting in
max8∈� 6({8}) ≥ G . So, in combination in this case 5 ((★ ∩�′) ≥ G .
On the other hand, by subadditivity of 5 and the de�nition of G ,
5 ((★∩�′) ≤ ∑

8∈(★∩�′ 5 ({8}) ≤ 2= ·G . Therefore, there is a unique
9★ ∈ {0, 1, . . . , ⌈logb 2=⌉} for which G 9 ≤ 5 ((★ ∩�′) < b · G 9 .

Now, since 1
b
· 5 ((★ ∩�′) ≤ G 9 ≤ 5 ((★ ∩�′),

6(* ( 9★) ) ≥
G 9★

128
− max8∈�′ 5 ({8})

4

≥ 5 ((★ ∩�′)
128 · b − max8∈� 6({8})

2

≥ 5 ((★ ∩�′) ·
(

1

128 · b −
1

256 · b

)

≥ 128b · 6((★)
128b + 1

1

256 · b =
6((★)
256b + 2 ,

where the �rst inequality is by Lemma 3.6, the second inequality
is since for every 8 ∈ �′ it holds that 28

5 ( {8 }) ≤
1
2 and thus 6({8}) =

5 ({8})(1 − 28
5 ( {8 }) ) ≥ 5 ({8})/2, the third and fourth inequality

both use that 5 ((★ ∩�′) > 128b ·max{0,max8∈� 6({8})}, and the
the fourth inequality additionally uses Lemma 3.2. This gives an
approximation of 1

256b+2 . □

4 INAPPROXIMABILITY RESULTS FOR XOS
AND SUBADDITIVE

In this section, we present our main inapproximability results. We
show a lower bound of Ω(

√
=) for subadditive reward functions,

and a constant lower bound for XOS reward functions (both with
demand queries).
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A striking feature of both of these results is that the reward
functions used in the proofs are constant-factor close to submodular
(see Observation 4.3).

4.1 Inapproximability Result for Subadditive

We begin by stating and proving our inapproximability result for
subadditive reward functions.

Theorem 4.1. For every randomized algorithm that performs only

polynomially many value and demand queries, there is a subadditive

function 5 such that the approximation ratio is Ω(
√
=) with high

probability.

To prove the theorem, we de�ne a probability distribution over
instances and consider an arbitrary deterministic algorithm on
a randomly drawn instance. By Yao’s principle, the worst-case
approximation ratio of any randomized algorithm is lower-bounded
by the the approximation ratio of any deterministic algorithm on
this randomized instance.

We describe the random instances in Section 4.1.1, and establish
properties of the reward functions and the principal’s utility func-
tion used in the construction in Section 4.1.2 and Section 4.1.3. We
prove a lemma that limits the power of demand queries in these
random instances in Section 4.1.4, and give the proof of Theorem 4.1
in Section 4.1.5.

4.1.1 Distribution Over Subadditive Reward Functions 5) . To de�ne
the probability distribution over instances, let = ∈ N be an even
square number. In every instance, the agents’ costs are the same,
namely 28 =

2
= for every agent 8 .

The instances di�er in terms of the reward functions. To de�ne
them, consider the following subadditive function 5 over = agents:

5 (() =




3 + 2· |( |√
=
|( | ≤ =

2

4 +
√
= |( | = =

2 + 1
5 +
√
= |( | = =

2 + 2
6 +
√
= |( | ≥ =

2 + 3
Given a set) of size =/2+1, let 5) be the function where 5) (() =

5 (() + 1 [( = ) ]. Accordingly, let 6) be the associated principal’s
utility function. The random instance consists of 5)★ , where )★ is
a uniformly drawn set of size =/2 + 1.

4.1.2 Properties of the Reward Function 5) . We state and prove
properties of the reward functions 5) . In particular, we show that
they are subadditive, and close to submodular functions, and even
to symmetric ones; i.e., submodular functions that depend only on
the cardinality of the set.1

Claim 4.2. For every ) , the function 5) is subadditive.

Proof. Consider any disjoint sets (1, (2 ⊆ �. We show that
5) ((1) + 5) ((2) ≥ 5) ((1 ∪ (2). Distinguish two cases.

Case 1: |(1 |, |(2 | ≤ =
2 . In this case 5) ((1) + 5) ((2) = 6+ 2· ( |(1 |+ |(2 |)√

=
.

If |(1 | + |(2 | ≤ =
2 , then 5) ((1 ∪ (2) ≤ 3 + 2· ( |(1 |+ |(2 |)√

=
≤ 6 +

1Since symmetric submodular functions are gross-substitutes [29], these subadditive
functions are even close to gross-substitutes functions.

2· ( |(1 |+ |(2 |)√
=

= 5) ((1) + 5) ((2). If |(1 | + |(2 | > =
2 , then 5) ((1∪(2) ≤

6 +
√
= ≤ 6 + 2· ( |(1 |+ |(2 |)√

=
= 5) ((1) + 5) ((2).

Case 2: |(1 | > =
2 , |(2 | ≥ 1. In this case 5) ((1)+ 5) ((2) ≥ 4+

√
=+3 ≥

5) ((1 ∪ (2). □

Observation 4.3. There is a symmetric submodular function 5 ′ that
ful�lls

5 ′(() ≤ 5) (() ≤
(
1 + 3

3 +
√
=

)
5 ′(()

for all ( and ) .

Proof. Let 5 ′(() = min{3 + 2· |( |√
=
, 3 +

√
=}. Note that 5 ′, as

the minimum between two submodular functions, is submodular.
Observe that 5 ′(() ≤ 5) (() for all ( ⊆ � with equality for |( | ≤ =

2 .
For |( | > =

2 , we have 5
′(() = 3 +

√
= and 5) (() ≤ 6 +

√
=. □

4.1.3 Properties of the Principal’s Utility Function 6) . We next
show that ) is the optimal contract for reward function 5) , and
no other set gives a better than $ (

√
=)-approximation to ) . This

implies that one needs to identify ) in order to get a better than
$ (
√
=)-approximation.

Lemma 4.4. We have that 6) () ) ≥
√
=
4 and 6) (() ≤ 5 for all

( ≠ ) .

Proof. First note that for every 8 ∈ ) , 5) (8 | ) \ {8}) = 2. Thus,

6) () ) = 5) () )
(
1 −∑

8∈)
28

5) (8 |) \{8 })

)
≥
√
=
4 . Next, consider any

( ≠ ) . We can distinguish the following cases.

• If |( | ≤ 1, then 6) (() ≤ 5) (() ≤ 3 + 2√
=
.

• If 1 < |( | ≤ =
2 , then 5) (8 | ( \ {8}) = 2√

=
, thus

6) (() = 5) (()
(
1 −

∑
8∈(

28

5) (8 | ( \ {8})

)
= 5) (()

(
1 − 1
√
=
|( |

)

≤
{
5 ·

(
1 − |( |√

=

)
|( | <

√
=

0 |( | ≥
√
=

• If |( | ≥ =
2 + 1 and ( ≠ ) , then 5) (8 | ( \ {8}) ≤ 1 for all 8 ∈ ( ,

thus

6) (() = 5) (()
(
1 −

∑
8∈(

28

5) (8 | ( \ {8})

)
≤ 5) (()

(
1 − |( | · 2

=

)
≤ 0.

Hence for any ( ≠ ) it holds that 6) (() ≤ 5. □

4.1.4 Limiting the Power of Demand�eries. We now show that
with each demand query one can distinguish at most =29 sets )★.
This together with Lemma 4.4 will derive our impossibility result.

Lemma 4.5. For= > 4096, for every vector of prices? = (?1, . . . , ?=),
the set of {)★ | � (5 , ?) ≠ � (5)★, ?)} is at most of size =29, where

� (5 , ?) (resp. � (5)★, ?)) is the demand set2 of function 5 (resp. 5)★)

with respect to prices ? .

Let (? = {8 | ?8 ≤ 1/4}, and �? = {8 | ?8 ≥ 1/2}.

Claim 4.6. If |�? | ≤ =/2−3, then for every) it holds that� (5) , ?) =
� (5 , ?).
2For simplicity of the proof, we assume that when there are multiple sets in demand,
the tie breaking is consistent across all 5) .
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Proof. Since 5) and 5 disagree only on the value of ) , it is
su�cient to show that� (5) , ?) ≠ ) . Assume towards contradiction
that� (5) , ?) = ) , then, because |�\�? | ≥ =/2+3 and |) | = =/2+1,
the set Δ := � \ �? \) is of size at least 2. Let G,~ be two arbitrary
di�erent elements in Δ, and note that for these ? (G) < 1/2 and
? (~) < 1/2. Now 5) () ∪{G,~})−? () ∪{G,~}) ≥ 1+ 5) () ) −? () ) −
? (G) − ? (~) > 5 () ) − ? () ) which contradicts that) is the demand
set for 5) . □

Claim 4.7. For = > 4096, if |(? | ≤ =/2 − 8, then for every) it holds

that � (5) , ?) = � (5 , ?).

Proof. Since 5) and 5 disagree only on the values of ) , it is
su�cient to show that� (5) , ?) ≠ ) . Assume towards contradiction
that � (5) , ?) = ) , then the set Δ := ) \ (? is of size at least 9. Let
- be an arbitrary subset of Δ of size 9. It holds that

5) () \ - ) − ? () \ - ) = 5) () ) − 2 −
16
√
=
− ? () ) + ? (- )

≥ 5) () ) − ? () ) +
|- |
4
− 2 − 16

√
=

> 5) () ) − ? () ),
which contradicts that ) is the demand set. □

Claim 4.8. If |(? | > =/2−8 and |�? | > =/2−3, then for all) ∉ {( |
( |( | = =/2 + 1) ∧ (|( \ (%? | ≤ 14)} it holds that � (5) , ?) = � (5 , ?).

Proof. Since 5) and 5 disagree only on the values of ) , it is
su�cient to show that� (5) , ?) ≠ ) . Assume towards contradiction
that� (5) , ?) = ) , it holds that the set Δ1 := �? ∩) is of size at least
5 since |�? ∩) | ≥ |) \ (? | − |� \ �? \ (? | ≥ 14 − 9 = 5, and the set
Δ2 := (? \) is of size at least 6 since |(? \) | = |) \(? | − |) | + |(? | ≥
14 − 8 = 6. Let - be an arbitrary subset of Δ1 of size 5 and let . be
an arbitrary subset of Δ2 of size 5. It holds that

5) (() \ - ) ∪ . ) − ? (() \ - ) ∪ . )
= 5) () ) − 1 − ? () ) + ? (- ) − ? (. )

≥ 5) () ) − ? () ) +
|- |
4
− 1 > 5) () ) − ? () ),

which contradicts that ) is the demand set. □

Proof of Lemma 4.5. By combining Claim 4.6 and Claim 4.7, a
demand query can only reveal information about) if |(? | > =/2−8
and |�? | > =/2 − 3, and even then, by Claim 4.8, a demand query
cannot distinguish between) ’s not in {( | ( |( | = =/2+1)∧(|(\(? | ≤
14)}. Now, the lemma follows since for every choice of (? of size
greater than =/2 − 8, the set {( | ( |( | = =/2 + 1) ∧ (|( \ (? | ≤ 14)}
is at most of size =29. (One can bound it by counting the options
to select a set ( \ (? of size at most 14 and then select a set (? \ (
which is of size at most 15 since |(? \ ( | = |( \ (? | + |(? | − |( | ≤
14 += − |�? | − (=/2 + 1) ≤ 14 += − (=/2− 2) − (=/2 + 1) = 15.) □

4.1.5 Pu�ing it All Together. We are now ready to prove the theo-
rem.

Proof of Theorem 4.1. Consider any �xed deterministic algo-
rithm �!� , and the random instances described in Section 4.1.1.
Let (�!� be the set that the algorithm computes when all demand
and value queries are answered according to the function 5 . We

claim that on the vast majority of functions 5) the algorithm will
also compute (�!� .

To this end, let T8 be the family of all sets ) of size =
2 + 1 such

that the �rst 8 demand or value queries performed by the algorithm
would have led to the same answers on 5) as on 5 . Clearly |T0 | =( =
=/2+1

)
. By Lemma 4.5 any demand query allows us to distinguish

at most =29 many sets from 5 (and of course, any value query can
distinguish at most one set). That is, |T8+1 | ≥ |T8 | − =29.

This implies that |T8 | ≥
( =
=/2+1

)
−8 ·=29. Furthermore, by Lemma 4.4,

the approximation ratio of the algorithm that uses at most 8 queries
is no better than 20√

=
whenever )★ ∈ T8 and )★

≠ (�!� . This hap-

pens with probability of at least 1 − |T8 |−1( =
=/2+1)

since )★ is uniformly

distributed in T8 and the algorithm can choose just one of them.
Overall, we get that the approximation of an algorithm �!� that
uses at most 8 demand and value queries is at most

�

[
6((�!� )
6()★)

]
≤ Pr[)★

∉ T8 ∨)★
= (�!� ] · 1

+ (1 − Pr[)★
∉ T8 ∨)★

= (�!� ]) ·
20
√
=

≤
( =
=/2+1

)
− |T8 | + 1( =

=/2+1
) + |T8 | − 1( =

=/2+1
) · 20√

=

≤ 20
√
=
+ 8 · =

29 + 1( =
=/2+1

) ≤ $

(
1
√
=

)
,

where the last inequality holds for every polynomial amount of
demand and value queries. □

4.2 Inapproximability Result for XOS

We conclude by stating our inapproximability result for XOS reward
functions. The proof follows the same structure as Theorem 4.1, so
we focus on stating the family of XOS functions and defer the rest
of the proof to Appendix C.

Theorem 4.9. For every randomized algorithm that performs only

polynomially many value and demand queries, there is a subadditive

function 5 such that the approximation ratio is at least 1.136 with

high probability.

Proof. Let = be an even number. Consider the following sym-
metric XOS function 5 over = agents:

5 (() =
{
1 + 3· |( |

= |( | ≤ =
2

1/2 + 4· |( |
= |( | > =

2

Given a set ) of size =/2 + 1, let 5) be the function where 5) (() =
5 (() + 1 [( = ) ] · 1= . The costs of all actions are

5
= (=+2) .

The rest of the proof follows exactly the same steps as in the
proof of Theorem 4.1, just instead of using Claim 4.2, Lemma 4.4
and Lemma 4.5, it uses Claim C.1, Lemma C.2 and Lemma C.3 which
are deferred to Appendix C. □

5 DISCUSSION

In this paper, we study a combinatorial variant of the principal-
agent contract model with multiple agents, seeking to maximize the
principal’s expected utility. We explore the design of near-optimal
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contracts for reward functions from the hierarchy of complement-
free functions of [36]. We show that XOS reward functions admit
constant-factor approximation, while for subadditive reward func-
tions there is a polynomial lower bound. Our work suggests many
natural open questions including:

• Is there a PTAS for submodular reward functions? Our lower
bound only works for XOS reward functions.
• What is the best approximation that can be achieved for
subadditive reward functions with access to demand oracles?
Our work shows a lower bound of Ω(

√
=), while an $ (=)

upper bound can be achieved trivially by incentivizing at
most one agent.

More generally, it is an interesting direction to combine our model
and techniques with the ones in [17] to design approximation algo-
rithms for a contract problem with multiple agents, each choosing
from multiple actions.

A ADDITIVE REWARD FUNCTIONS

In this appendix we show that it is NP-hard to �nd the best contract
for additive 5 , but it is possible to �nd an FPTAS for approximating
the best contract.

A.1 NP-Hardness

Proposition A.1. The optimal contract problem for additive re-

ward functions over = agents is NP-hard.

Proof. The proof is by reduction from PARTITION. We are
given a multi-set {F1, . . . ,F=} of positive integers F 9 > 0 with∑=

9=1F 9 =, , and have to decide whether [=] can be partitioned
into �1 and �2 = [=] \ �1 such that

∑
9 ∈�1 F 9 =

∑
9 ∈�2 F 9 =, /2.

The corresponding contract problem is: 5 is additive over =
agents, where agent 8 has a value of E8 = F8 and a cost 28 = F2

8 /, .
Since agent 8’s marginal is E8 , the indi�erence point for agent 8 is
U8 = 28/E8 = F8/, . The principal’s utility for incentivizing a set of
agents ( ⊆ [=] is

6(() =
(
1 −

∑
8∈(

F8

,

)
·
∑
8∈(

F8 .

6 is maximized when
∑
8∈( F8 is closest to, /2. Thus, instance

{F1, . . . ,F=} is a yes-instance, if and only if 6((★) = ,
4 . □

A.2 FPTAS

Proposition A.2. There is an FPTAS for the optimal contract

problem for an additive reward functions over = agents.

Suppose we know 1 = max8∈(★ 5 ({8}). We can assume this be-
cause there are only = choices and can run the following algorithm
with each choice.

Let X =
n
= and de�ne an additive function 5̃ by rounding down

each 5 ({8}) to the next multiple of X1. That is, 5̃ ({8}) =
⌊
5 ( {8 })
X1

⌋
X1

and 5̃ (() = ∑
8∈( 5̃ ({8}). This way, each 5̃ (() is a multiple of X1.

Let )G be the set ( that minimizes∑
8∈(

28
5 ( {8 }) subject to 5̃ () ) ≥ G . Our algorithm returns the set

)G that maximizes
(
1 −∑

8∈)G
28

5 ( {8 })

)
G among all G = :X1 for

: ∈ {0, 1, . . . , ⌈=
X
⌉}.

Claim A.3. The algorithm can be implemented in polynomial time

in = and 1
n .

Proof. Observe that we only need to compute polynomially
many sets)G . Furthermore, these sets can be computed by dynamic
programming in polynomial time.

To this end, let

�( 9, G) = min

{∑
8∈(

28

5 ({8}) | ( ⊆ {1, . . . , 9}, 5̃ (() ≥ G

}
,

�(0, G) = 0 if G ≤ 0 and �(0, G) = ∞ if G > 0. Observe that

�( 9, G) = min

{
�( 9 − 1, G), �( 9 − 1, G − 5̃ ({8})) + 28

5 ({8})

}
,

which completes the proof. □

Claim A.4. The algorithm computes a (1 − n)-approximation to the

optimal contract.

Proof. Note that for every set ( , we have 5̃ (() ≤ 5 ((). There-
fore for every set )G

6()G ) = ©«
1 −

∑
8∈)G

28

5 ({8})
ª®¬
5 ()G ) ≥ ©«

1 −
∑
8∈)G

28

5 ({8})
ª®¬
G .

In particular, for the set )G that we return, we have

©«
1 −

∑
8∈)G

28

5 ({8})
ª®¬
G ≥

©«
1 −

∑
8∈)

5̃ ((★)

28

5 ({8})
ª®®¬
5̃ ((★)

≥
(
1 −

∑
8∈(★

28

5 ({8})

)
5̃ ((★)

because 5̃ ((★) = :X1 for some : in the range.
Finally, observe that we have

5̃ ((★) =

∑
8∈(★

5̃ ({8}) ≥
∑
8∈(★
(5 ({8}) − X1)

≥ 5 ((★) − =X1 ≥ (1 − n) 5 ((★).
Therefore

(1 − n)6((★) ≤
(
1 −

∑
8∈(★

28

5 ({8})

)
5̃ ((★),

as claimed. □

B SUBMODULAR WITH VALUE QUERIES

In this appendix we show how to adjust the proof of Theorem 3.1
in Section 3 to submodular reward functions with value queries.

B.1 Approximate Demand Query via Value
Queries

Our adjusted argument relies on the ability to compute an approxi-
mate demand set as formalized in the following lemma.

Lemma B.1 ([31, 40]). For submodular 5 given access to a value

oracle, there exists a poly-time algorithm that �nds a set ( such that

5 (() −
∑
8∈(

?8 ≥ (1 − 1/4) 5 () ) −
∑
8∈)

?8 for all ) .
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We call the set ( a V-approximate demand set, where V = 1− 1/4 .
Note that this notion of an approximate demand query is not a
fully multiplicative approximation, it’s weaker in that we need to
subtract the full price of a set.

B.2 Adjusting the Proof to Approximate
Demand Queries

We next show how to adapt our proof to the case of submodular
5 , using only value oracle calls. To do so, we �rst show that if we

modify Algorithm 2 so that (1) we initialize Ψ to be Ψ =
V2 ·~̃
32 −

max8∈�′ 5 (8), (2) we initialize the prices to be ?8 =
V
2 ·

√
28 · ~̃, (3)

we replace the initialization of) to be a V-approximate demand set
instead of an exact demand set (which can be done for V = 1 − 1

4
using value oracle by Lemma B.1), and (4) we remove actions with
negative utility from) , then the algorithm returns a set* with the
following guarantee:

Lemma B.2. Algorithm 4 runs in polynomial time with access to a

demand and value oracle to 5 . If ~̃ ≤ 5 ((★∩�′), then the set* ⊆ �′

that it returns satis�es

6(* ) ≥ max

{
~̃

128
− max8∈�′ 5 ({8})

4
, 0

}
.

ALGORITHM 4: Approximately optimal contract given
an estimate of 5 ((★)
Data: An XOS function 5 : 2� → R≥0, costs {28 }8∈� , an

estimate ~̃, a parameter V
Result: A set* ⊆ �′

Let Ψ =
V2 ·~̃
32 −max8∈�′ 5 (8).

For every 8 ∈ �′, let ?8 = V
2 ·

√
28 · ~̃ (?8 = ∞ for 8 ∈ � \�′)

Let ) be a V-demand set with prices ?8 over the set �′

while Exists 8 ∈ ) such that 5 (8 | ) \ {8}) < ?8 do
) = ) \ {8}

end

if 0 < Ψ < 5 () ) then
* ← the output of Algorithm 1 on (5 ,) ,Ψ, X =

1
2 )

else
* ← ∅

end

return U

Proof. If Ψ ≤ 0 then the algorithm returns the empty set, which
satis�es the proof. Otherwise, if we denote by) 1 the V-demand set,
and by ) 2 the V-demand set after removing actions with negative

utility, then we have

5 () 2) ≥ 5 () 2) −
∑
8∈) 2

?8

≥ 5 () 1) −
∑
8∈) 1

?8

≥ V 5 ((★ ∩�′) −
∑

8∈(★∩�′
?8

= V 5 ((★ ∩�′) −
V
√
~̃

2
·

∑
8∈(★∩�′

√
28

≥ V 5 ((★ ∩�′) − V

2

√
5 ((★ ∩�′) · ~̃

≥ V

2
· 5 ((★ ∩�′), (6)

where the �rst inequality is since the prices are non-negative, the
second inequality is since we remove actions with negative utilities,
the third inequality since) 1 is an approximate demand set over the
set�′, the fourth inequality is by Lemma 3.3, and the last inequality
holds because ~̃ ≤ 5 ((★ ∩�′). Furthermore, as in) 2 we deleted all
actions with negative utility, we have to have 5 (8 | ) 2 \ {8}) ≥ ?8
for all 8 ∈ ) 2.

Thus, since ~̃ ≤ 5 ((★ ∩ �′) by assumption and Ψ = V2~̃/32 −
max(0,max8∈�′ 5 ({8})) < V2~̃/2 it holds that

5 () 2)
(6)
≥ V

2
· 5 ((★ ∩�′) ≥ V~̃

2
> Ψ.

By Lemma 3.5, the set* ⊆ ) 2 ful�lls

5 (* ) ≥ (1 − X) Ψ =
V2

64
~̃ − 1

2
max
8∈) 2

5 (8) ≥ V2

64
~̃ − 1

2
max
8∈�′

5 (8) .

Furthermore,* ful�lls

5 (* ) ≤ Ψ +max
8∈) 2

5 (8) ≤ V2~̃

32
(7)

and for all 8 ∈ * it holds

5 (8 | * \ {8}) ≥ X 5 (8 | ) 2 \ {8}) = 1

2
· 5 (8 | ) 2 \ {8}). (8)

Therefore, for all 8 ∈ * , we have

5 (8 | * \ {8})
(8)
≥ 1

2
· 5 (8 | ) 2 \ {8}) ≥ 1

2
· ?8

=
V

4
·
√
28~̃ =

√
2V228

~̃

32

(7)
≥

√
228 5 (* ).

So, Lemma 3.4 implies 6(* ) ≥ 1
2 5 (* ). So, in combination,

6(* ) ≥ 1

2
5 (* ) ≥ 1

2

(
V2

64
~̃ − 1

2
max
8∈�′

5 (8)
)
,

as claimed. □

We next show that Algorithm 3 that uses as a subroutine the
modi�ed algorithm (Algorithm 4) ful�lls Theorem 3.1.

Proof of Theorem 3.1 for the case of submodular. If 5 ((★∩
�′) ≤ 128b

V2
·max{0,max8∈� 6({8}} then by Lemma 3.2 the best sin-

gle action (or the empty set) gives at least an approximation of
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V2

128b+V2 . Else, �
′
≠ ∅ (thus Ψ is well de�ned), and it holds that

5 ((★ ∩�′) ≥ 128b

V2
·max{0,max

8∈�′
6({8})} ≥ max

8∈�′
5 ({8})/2 ≥ Ψ,

and 5 ((★ ∩�′) ≤ 2= · Ψ.
Let 9★ be the unique 9 in which G 9 ≤ 5 ((★ ∩�′) < b · G 9 . Note

that because of the bounds we just established we must have 9★ ≥ 0

and 9★ ≤ ⌈logb 2=⌉. Now, since 1
b
· 5 ((★ ∩�′) ≤ G 9 ≤ 5 ((★ ∩�′),

6(* ( 9★) ) ≥
V2G 9★

128
− max8∈�′ 5 ({8})

4

≥ V2 5 ((★ ∩�′)
128 · b − max8∈� 6({8})

2

≥ V2 5 ((★ ∩�′) ·
(

1

128 · b −
1

256 · b

)

≥ V2

128b

V2
· 6((★)

128b

V2
+ 1

1

256 · b =
V2 · 6((★)
256b + 2 · V2

,

where the �rst inequality is by Lemma B.2, the second inequality
is since for every 8 ∈ �′ it holds that 28

5 ( {8 }) ≤
1
2 and thus 6({8}) =

5 ({8})(1 − 28
5 ( {8 }) ) ≥ 5 ({8})/2, the third and fourth inequalities

are since we are considering the case that 5 ((★ ∩ �′) > 128b

V2
·

max{0,max8∈� 6({8})}. This gives an approximation of
V2

256b+2·V2 .
□

C INAPPROXIMABILITY FOR XOS REWARD
FUNCTIONS

In this appendix, we provide details for the proof of Theorem 4.9.
The claims, observations, and lemmas below refer to the function
5 and 5) de�ned in the proof of the theorem.

Claim C.1. For every ) , the function 5) is XOS.

Proof. Consider the set of additive functions where there is for
every agent 8 ∈ � an additive function 08 such that 08 (8) = 1 + 3

= ,

and 08 ( 9) = 3
= for every 9 ≠ 8 , and there is another additive function

0′8 , where 0
′
8 (8) = 0.5+ 4

= , and 0
′
8 ( 9) =

4
= for every 9 ≠ 8 . It is easy to

verify that themaximum over {08 , 0′8 }8∈� is the function 5 . To create

5) , we add another additive function 0) , where 0) (8) = 5
= ·1 [8 ∈ ) ].

It holds that 0) () ) = =+2
2 ·

5
= = 2.5 + 5

= = 5) () ), and it holds that
0) (() ≤ 5) (() for every ( ≠ ) , since (1) If |( | > =/2 + 1, then
0) (() ≤ 0) () ) = 2.5 + 5

= ≤ 5) ((). (2) If |( | = =/2 + 1 and ( ≠ ) ,

then 0) (() ≤ =
2 ·

5
= ≤ 5) ((). (3) If |( | < =/2 + 1, then 0) (() ≤

|( | · 5= ≤ 5) ((). Thus 5) is the maximum of {08 , 0′8 }8∈� ∪ {0) }. □

Lemma C.2. We have that 6) () ) ≥ 5
4 and 6) (() ≤ 11

10 for all

( ≠ ) .

Proof. First note that for every 8 ∈ ) , 5) (8 | ) \ {8}) = 5
= . Thus,

6) () ) = 5) () )
(
1 −∑

8∈)
28

5) (8 |) \{8 })

)
= (2.5 + 5

= ) · (1 −
1
2 ) ≥

5
4 .

Next, consider any ( ≠ ) . We can distinguish the following cases.

• If |( | ≤ 1, then 6) (() ≤ 5) (() ≤ 1 + 3
= .

• If 1 < |( | ≤ =
2 , then 5) (8 | ( \ {8}) = 3

= , thus

6) (() = 5) (()
(
1 −

∑
8∈(

28

5) (8 | ( \ {8})

)

=

(
1 + 3 · |( |

=

)
·
(
1 − 5 · |( |

3 · (= + 2)

)
≤ 11

10
,

where the last inequality holds for large enough = and any
|( | ≤ =

2 .

• If |( | ≥ =
2 + 1 and ( ≠ ) , then 5) (8 | ( \ {8}) ≤ 4

= for all 8 ∈ ( ,
thus

6) (() ≤
(
1/2 + 4 · |( |

=

) (
1 −

∑
8∈(

28

5) (8 | ( \ {8})

)

≤
(
1/2 + 4 · |( |

=

) (
1 − 5 · |( |

4 · (= + 2)

)
≤ 11

10
,

where the last inequality holds for large enough = and any
|( | ≥ =

2 + 1.
Hence for any ( ≠ ) it holds that 6) (() ≤ 11

10 . □

Lemma C.3. For every vector of prices ? = (?1, . . . , ?=), the set
of {)★ | � (5 , ?) ≠ � (5)★, ?)} is at most of size =29, where � (5 , ?)
(resp. � (5)★, ?)) is the demand set of function 5 (resp. 5)★) with

respect to prices ? .

For simplicity of the proof, we assume that when there are mul-
tiple sets in demand, the tie breaking is consistent across all 5) .

Proof. Let (? = {8 | ?8 ≤ 3.25
= }, and �? = {8 | ?8 ≥ 3.5

= }.

ClaimC.4. If |�? | ≤ =/2−3, then for every) it holds that� (5) , ?) =
� (5 , ?).

Proof. Since 5) and 5 disagree only on the value of ) , it is
su�cient to show that� (5) , ?) ≠ ) . Assume towards contradiction
that� (5) , ?) = ) , then, because |�\�? | ≥ =/2+3 and |) | = =/2+1,
the set Δ := � \ �? \) is of size at least 2. Let G,~ be four arbitrary

di�erent elements in Δ, and note that for these ? (G) < 3.5
= and

? (~) < 3.5
= . Now 5) () ∪ {G,~}) − ? () ∪ {G,~}) ≥ 7

= + 5) () ) −
? () ) − ? (G) − ? (~) > 5) () ) − ? () ), which contradicts that) is the
demand set. □

ClaimC.5. If |(? | ≤ =/2−8, then for every) it holds that� (5) , ?) =
� (5 , ?).

Proof. Since 5) and 5 disagree only on the values of ) , it is
su�cient to show that� (5) , ?) ≠ ) . Assume towards contradiction
that � (5) , ?) = ) , then the set Δ := ) \ (? is of size at least 9. Let
- be an arbitrary subset of Δ of size 9. It holds that

5) () \ - ) − ? () \ - ) = 5) () ) −
29

=
− ? () ) + ? (- )

≥ 5) () ) − ? () ) +
3.25 · |- |

=
− 29

=
> 5) () ) − ? () ),

which contradicts that ) is the demand set. □

ClaimC.6. If |(? | > =/2−8 and |�? | > =/2−3, then for all) ∉ {( |
( |( | = =/2 + 1) ∧ (|( \ (%? | ≤ 14)} it holds that � (5) , ?) = � (5 , ?).
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Proof. Since 5) and 5 disagree only on the values of ) , it is
su�cient to show that� (5) , ?) ≠ ) . Assume towards contradiction
that� (5) , ?) = ) , it holds that the set Δ1 := �? ∩) is of size at least
of size 5 since |�? ∩) | ≥ |) \(? | − |�\�? \(? | ≥ 14−9 = 5, and the
setΔ2 := (? \) is of size at least 6 since |(? \) | = |) \(? |−|) |+|(? | ≥
14 − 8 = 6. Let - be an arbitrary subset of Δ1 of size 5 and let . be
an arbitrary subset of Δ2 of size 5. It holds that

5) (() \ - ) ∪ . ) − ? (() \ - ) ∪ . )

= 5) () ) −
1

=
− ? () ) + ? (- ) − ? (. )

≥ 5) () ) − ? () ) +
|- |
4=
− 1

=
> 5) () ) − ? () ),

which contradicts that ) is the demand set. □

By combining Claim C.4 and Claim C.5, a demand query can
only reveal information about) if |(? | > =/2−8 and |�? | > =/2−3,
and even then, by Claim C.6, a demand query cannot distinguish
between ) ’s not in {( | ( |( | = =/2 + 1) ∧ (|( \ (? | ≤ 14)}. Now,
the lemma follows since for every choice of (? of size greater than
=/2−8, the set {( | ( |( | = =/2+1)∧(|( \(? | ≤ 14)} is at most of size
=29. (One can bound it by counting the options to select a set ( \ (?
of size at most 14 and then select a set (? \( which is of size at most
15 since |(? \ ( | = |( \ (? | + |(? | − |( | ≤ 14 += − |�? | − (=/2 + 1) ≤
14 + = − (=/2 − 2) − (=/2 + 1) = 15.) □
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