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Pandora’s problem is a fundamental model in economics that studies optimal search strategies under costly

inspection. In this paper we initiate the study of Pandora’s problem with combinatorial costs, capturing many

real-life scenarios where search cost is non-additive. Weitzman’s celebrated algorithm [1979] establishes the

remarkable result that, for additive costs, the optimal search strategy is non-adaptive and computationally

feasible.

We inquire to which extent this structural and computational simplicity extends beyond additive cost

functions. Our main result is that the class of submodular cost functions admits an optimal strategy that follows

a fixed, non-adaptive order, thus preserving the structural simplicity of additive cost functions. In contrast, for

the more general class of subadditive (or even XOS) cost functions the optimal strategy may already need to

determine the search order adaptively. On the computational side, obtaining any approximation to the optimal

utility requires super polynomially many queries to the cost function, even for a strict subclass of submodular

cost functions.
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1 INTRODUCTION
Pandora’s problem captures the challenge of searching for a good alternative among multiple

options, under costly evaluation. This problem was introduced in the seminal paper of Weitzman

[1979], as a stochastic search problem over 𝑛 boxes, each associated with an independent hidden

stochastic value, and an exploration cost. At every point in time, the decision maker chooses which

box (if any) to open. Upon opening a box, the decision maker incurs its exploration cost, and

observes its realized value. Then, the decision maker can either decide to open an additional box or

halt and obtain the maximum value observed so far. The goal is to maximize the expected maximum

value over the set of opened boxes minus the sum of their exploration costs.

This setting captures many real-life scenarios, such as hiring employees or searching for an

apartment, where there is an inherent tension between the desire to explore many options in

an attempt to find one with high reward, and the desire to minimize the total exploration cost.
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Weitzman [1979] showed that the optimal strategy for this problem exhibits both structural sim-

plicity and computational simplicity. In particular, it opens the boxes according to a fixed-order,

determined at the outset; only the stopping time is determined online, depending on the observed

values. Moreover, the entire optimal strategy can be computed efficiently.

The last few years have seen a renewed interest in Pandora’s problem, leading to a line of work

that studies several extensions of the original model. Most studies focus on extending one of two

features of the original problem: either considering a different notion of value derived from the set

of opened boxes [e.g., Olszewski andWeber 2015; Singla 2018]; or modifying the rules of exploration

[e.g., Boodaghians et al. 2020; Doval 2018; Esfandiari et al. 2019; Fu et al. 2018]. However, all of

them share one fundamental assumption, namely that each box is associated with an individual

cost, and these costs accumulate additively just like in the original model.

However, in many real-life scenarios, exploring one alternative may affect the exploration cost

of other alternatives. For instance, when recruiting a new employee, there is a fixed cost for setting

up the hiring process, while evaluating each additional candidate induces a small marginal cost. As

another example, when searching for an apartment, each individual visit incurs a cost, but visiting

multiple apartments in the same neighborhood is clearly less expensive than the sum of the costs

of visiting them separately.

In this paper, we initiate the study of Pandora’s problem with combinatorial cost functions,

namely, a cost function that assigns a real value to every set of boxes. In this model, a decision

maker who opens an extra box, given a set 𝑆 of opened boxes, incurs its marginal cost given 𝑆 . We

inquire to which extent the structural and computational simplicity of Weitzman [1979] extends

beyond additive cost functions. As it turns out, the structural simplicity of the original problem

does not carry over to general cost functions. In particular, the exploration order in the optimal

strategy may unavoidably be adaptive. This is demonstrated in the following example.

Example 1.1. Consider an instance with 3 boxes. The value in box 1 is 10 with probability

1

2
and 0 otherwise. The value in box 2 is 12 with probability

1

2
and 0 otherwise. The value in

box 3 is 10 with probability 1. The total cost of exploring a set of boxes from the collection

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}} is 0, and the total cost of exploring a set of boxes from the collection

{{2, 3}, {1, 2, 3}} is 20. It is not too difficult to observe that opening both boxes 2 and 3 is too

expensive for any reasonable strategy. In fact, it can be shown (see the full version of the paper for

details) that the (unique) optimal strategy for this instance is the following: open box 1. If its value

is 10, then open box 2, otherwise (i.e., the value in box 1 is 0), open box 3.

In the example above, boxes 2 and 3 exhibit strong complementarity in their cost; namely, the

cost of opening both of them is (much) greater than the sum of their individual costs (which is

0). Many real-life scenarios, however, exhibit the opposite phenomenon, where the cost of the

whole is smaller than the sum of the costs of its parts. This structure is captured by the class of

subadditive cost functions, where 𝑐(𝑆 ∪𝑇 ) ≤ 𝑐(𝑆) + 𝑐(𝑇 ) for any sets of boxes 𝑆 and 𝑇 , also known

as complement-free functions.

A widely-encountered subclass of subadditive functions is the class of submodular functions,

defined by decreasing marginal contribution. Indeed, many real-life exploration tasks exhibit this

structure; e.g., where some fixed cost is incurred, followed by smaller individual costs. A hierarchy

of complement-free functions has been provided by Lehmann et al. [2006], including the prominent

classes of additive, submodular, and subadditive functions, as well as fractionally-subadditive

functions (also known as XOS), where additive ⊂ submodular ⊂ XOS ⊂ subadditive.
Given the prevalence of complement-free cost functions in real-life exploration scenarios, it

is natural to study the structure of optimal strategies in these scenarios, and the corresponding

computational problem. These are the main problems that drive us in this work. In particular, we
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ask whether Pandora’s problem under different classes of complement-free cost functions preserves

the structural and computational simplicity of the original problem with additive costs.

1.1 Our Results
As mentioned above, Example 1.1 shows an example of a general cost function, where an adaptive

exploration order is inevitable. We first show that this phenomenon is not unique to cost functions

that exhibit complementarities. Indeed, there exist instances with XOS cost functions for which an

adaptive exploration order is inevitable
1
.

Theorem 1: There exists an instance of the Pandora’s problem with an XOS cost function that

admits no optimal strategy with non-adaptive exploration order.

On the face of it, the above theorem seems to be unrelated to Example 1.1, where the cost-function

exhibits strong complementarity. However, we identify a close connection between the two results.

In particular, we show that every instance with a (monotone and normalized) cost function over 𝑛

boxes induces an “equivalent" instance with an XOS cost function over 𝑛 + 1 boxes, that inherits

the adaptive exploration order of its source instance. With this result, the necessity of an adaptive

order under XOS cost functions can be derived from Example 1.1. We refer the reader to the full

version of the paper for more details.

A key property of XOS functions that enables this construction is that a marginal function of an

XOS function 𝑐 (namely, for some fixed 𝑇 , 𝑐′(𝑆) ∶= 𝑐(𝑆 ⋃︀ 𝑇 ) ∶= 𝑐(𝑆 ∪𝑇 ) − 𝑐(𝑆)) is unrestricted, and
in particular can exhibit complementarities.

In stark contrast, the class of submodular functions is closed under marginal value; namely, if the

cost function 𝑐 is submodular, then so is the function 𝑐(⋅ ⋃︀ 𝑇 ) for any fixed set 𝑇 . In particular, the

scenario depicted in Example 1.1, where the combined cost of opening boxes 2 and 3 is excessive,

while opening each of them separately is cheap, cannot be replicated in an example utilizing a

submodular cost function, even with the addition of more boxes.

A natural question is then whether instances of Pandora’s problem with submodular cost

functions preserve the structural simplicity of additive costs. That is, we ask whether these instances

admit optimal strategies that open the boxes according to a fixed, non-adaptive order. Our first

main result answers this question in the affirmative (see Sections 3 and 4).

Theorem 2 (see Theorem 4.4): Every instance of Pandora’s problem with a submodular cost

function admits an optimal strategy with non-adaptive exploration order.

Our second main result shows that, while the structural simplicity is preserved under submodular

cost functions, the computational simplicity is not preserved. In particular, in Section 5 we prove

the following stronger result.

Theorem 3 (see Theorem 5.3): The problem of deciding whether a given instance of Pandora’s

problem with a submodular cost function admits a strategy that attains strictly positive utility

requires super-polynomially many queries to the cost function.

Notably, this theorem implies that no approximation to the optimal utility can be obtained with

polynomially-many cost queries.

1
Notably, for the larger class of subadditive cost functions, we find that an example demonstrating the necessity of adaptive

order can be induced by a (seemingly unrelated) example that has been given in a completely different model of Pandora’s

box under constrained exploration order [Boodaghians et al. 2020] (see the full version of the paper for details).
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1.2 Our Techniques
The main technical tool to solve Pandora’s problem is the notion of reservation value of a box

[e.g., Boodaghians et al. 2020; Esfandiari et al. 2019; Kleinberg and Kleinberg 2018; Singla 2018;

Weitzman 1979]. This is the maximum value, presumably among those observed in previously

opened boxes, for which opening the box achieves the same marginal utility as not opening

it. Formally, the reservation value of a box with random reward 𝑉 and (additive) cost 𝑐 is the

solution 𝑧 of the following equation: E (︀(𝑉 − 𝑧)+⌋︀ = 𝑐 . Weitzman’s optimal strategy opens the

boxes in decreasing order of reservation value, halting when the current maximum observed

reward exceeds the reservation value of the next unopened box. Since they are also easy to compute,

reservation values simultaneously establish structural and computational simplicity for the problem.

In the combinatorial setting that we study, however, this approach may yield an arbitrarily bad

performance.

Example 1.2. Consider an instance with 2 identical boxes, each with a random reward of 2 with

probability
1

3
(and 0 otherwise), and a symmetric unit-demand cost function with a cost of 1 (i.e.,

𝑐({1}) = 𝑐({2}) = 𝑐({1, 2}) = 1, and 𝑐(∅) = 0). The reservation value of the two boxes is negative,

thus Weitzman’s strategy would not open any one of them. However, the best strategy for this

instance opens both boxes, achieving an expected utility of 2 ⋅ 5

9
− 1 > 0.

The example illustrates why the reservation value is not suitable in the presence of combinatorial

costs: the intrinsic importance of a box in the exploration is not solely determined by its random

reward or its current marginal cost, but also by its influence on the marginal cost of all the

(exponentially many) possible subsets of boxes that may be opened in the future.

In what follows we describe our techniques for our structural and computation results. We

first present our techniques for the main structural result for Bernoulli instances, and then show

how to extend it from Bernoulli to general instances. Finally, we present our techniques for our

computational impossibility result.

Bernoulli instances. In Section 3 we prove Theorem 2 for Bernoulli instances, i.e., instances where
each box 𝑖 has value 𝑣𝑖 with probability 𝑝𝑖 and value 0 otherwise.

A key notion in our analysis is that of an impulsive strategy. Such a strategy is determined by

an ordered subset of boxes, and proceeds by opening them in the given order and halting upon

the first time that a non-zero value of a box is observed (or if all boxes of the strategy have been

opened). We show that every Bernoulli instance admits an optimal strategy that takes the form of

an impulsive strategy. To establish this result, we follow the following steps.

We first show that wemay assume the existence of an optimal strategy 𝜋∗ that takes the following
form: It starts by opening an arbitrary box 𝑟 . If its non-zero value is realized, then it executes

some impulsive sub-strategy 𝜋𝑌
, and if its realized value is 0, then it executes another impulsive

sub-strategy 𝜋𝑁
. This is proved by induction, using the fact that the marignal cost of a submodular

function is also submodular.

Under this assumption, we proceed as follows: Assume towards contradiction that there is no

optimal strategy which is impulsive. If all boxes of 𝜋𝑁
appear also in 𝜋𝑌

, then it is straightforward

to argue that the impulsive strategy that first executes 𝜋𝑌
, and then opens 𝑟 if no non-zero value

was observed, is an impulsive strategy that yields at least the same utility as 𝜋∗, and we are done.

Therefore it remains to handle the case where there exists a box in 𝜋𝑁
that does not appear in

𝜋𝑌
. In this case, we show that there exists a subset of 𝜋𝑁 ∖ 𝜋𝑌

that can be concatenated to 𝜋𝑌
to

improve the overall utility and thus obtain a contradiction.

The main tool we use to this end is the notion of an impulsive strategy with dummies. This is a
randomized strategy which is determined by a (deterministic) impulsive strategy 𝜋 and a subset 𝐴
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of its boxes, denoted 𝜋𝐴, and proceeds as follows: For a box 𝑖 ∈ 𝐴, it proceeds as usual (open the

box, observe its value, incur its marginal cost and halt if the observed value is non-zero). For a box

𝑖 ∉ 𝐴, instead of opening 𝑖 , it halts with probability 𝑝𝑖 and otherwise continues to the next box. In

particular 𝜋𝐴 only opens boxes from 𝐴.

Such a strategy is appealing, since it restricts the set of boxes that might be opened while retaining

some of the properties of the original strategy. For example, the contribution of any box 𝑖 ∈ 𝐴 to the

expected reward is the same in 𝜋𝐴 as in 𝜋 . Furthermore, every impulsive strategy with dummies is

a probability distribution over deterministic impulsive strategies. Thus, any lower bound on its

utility applies also to the utility of the best impulsive strategy in its support.

We use the notion of impulsive strategies with dummies to identify a strategy that can be

concatenated to 𝜋𝑌
which has a positive marginal utility, thus reaching a contradiction. In particular,

we prove that given an impulsive strategy 𝜋 and any partition𝐴⊍𝐵 of its boxes, the utility attained

by 𝜋 is at most the utility of 𝜋𝐵 plus the marginal utility of 𝜋𝐴 when executed after the boxes in

𝐵 have been opened. The submodularity of the cost function is crucial to obtain this technical

property. The desired strategy that can be concatenated to 𝜋𝑌
can now be identified, by applying

this lemma with 𝜋 ∶= 𝜋𝑁
, 𝐴 = 𝜋𝑁 ∖ 𝜋𝑌

, 𝐵 = 𝜋𝑌 ∩ 𝜋𝑁
. In particular, we prove that there exists such

a strategy in the support of 𝜋𝑁
𝐴 .

From Bernoulli to arbitrary instances. In Section 4, we show how to extend Theorem 2 to hold

for arbitrary distributions. We do so using the following steps: We devise a transformation that,

given an arbitrary instance ℐ creates a Bernoulli instance ℐ′, which maintains submodularity of

the cost function as well as other properties. First, the transformation discretizes the (possibly)

continuous and unbounded distributions to have finite supports, and then it “Bernoullifies” each

box by associating it with a set of Bernoulli boxes.

We then show a correspondence between strategies for the two instances in which an impulsive

strategy for ℐ′ is associated with a fixed order strategy for ℐ . The correspondence preserves the
utility up to an arbitrarily small precision. We conclude that if there is an instance that admits a

gap between the best fixed-order strategy and the best arbitrary strategy, then it implies that there

is a Bernoulli instance that admits a gap between the best impulsive strategy and best arbitrary

strategy, contradicting the main result of Section 3. The instance-transformation we use might be

of independent interest and find applications in other stochastic settings (such as prophet setting).

Computational Hardness. In Section 5 we prove Theorem 3 even for a very simple subclass

of submodular functions (i.e, matroid rank functions). To this end, we follow the construction

of Svitkina and Fleischer [2011], and design two instances of Pandora’s box problem whose cost

functions are “indistinguishable” using polynomially many cost queries, but only one of them

admits a strategy that yields positive utility. Since no algorithm can distinguish between them

efficiently, we conclude that the problem of deciding whether a given instance admits a strategy

that attains positive utility is unsolvable with polynomially many cost queries. Moreover, this

implies that no approximation can be obtained by an efficient algorithm.

1.3 Related Work
Pandora’s Problem originated in economics but has suscitated a keen interest in the computer

science community. Weitzman’s optimal solution is based on the clever idea of reservation value,

a quantity that captures the intrinsic value of a box in the exploration process. The reservation

value has a deep connection with the notion of Gittins index [Weber et al. 1992]; actually, Dumitriu

et al. [2003] showed that it is possible to rephrase Pandora’s problem as a Markov game whose

Gittins index coincides with the reservation value. Recently, a simpler proof of the optimality of
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Weitzman’s rule was also given by Kleinberg et al. [2016]. Following these papers, many interesting

modifications of Pandora’s Problem have been considered.

Singla [2018] used an adaptivity gap approach to approximately solve Pandora’s problem under

various combinatorial models, while Olszewski andWeber [2015] studied towhich extent a threshold

strategy like Weitzman’s is optimal when the definition of the reward of the exploration goes

beyond the max function.

A successful line of work has also focused on Pandora’s Problem with non-obligatory inspection.

Here, at the end of the exploration, the decision maker can decide to select an unopened box without

having to open it (and thus without paying its cost). Doval [2018] introduced this model, highlighting

the surprising property that there are instances where the optimal strategy is adaptive in the order of

boxes it chooses. A sequence of papers then closed this problem from the computational perspective

[Beyhaghi and Cai 2022; Beyhaghi and Kleinberg 2019; Fu et al. 2022]: Pandora’s problem with

non-obligatory inspection is NP-hard to solve but a PTAS exists for it. Interestingly enough, this

minor tweak in the exploration rule (i.e., giving the possibility of getting a single box “for free”

without inspection) hindered both the computational and structural simplicity of the original

setting.

Constraints on the order in which the boxes can be opened have also been studied. Esfandiari et al.

[2019] considered the case where the boxes have to be opened consistently with a total ordering

of the boxes (possibly skipping some). In contrast, Boodaghians et al. [2020] investigated partial

orderings on the boxes modeled by precedence graphs. In that work, the authors investigated to

which extent the simplicity of the original Pandora’s problem extends under order constraints:

when the partial ordering on the boxes is represented by a tree, then there exists an optimal strategy

that is fixed order and can be computed efficiently; however, under general partial ordering the

problem becomes NP-hard to solve, and there are instances where adaptivity is needed to achieve

optimality. We further elaborate on the relations with our work in the full version of the paper.

Fu et al. [2018]; Segev and Singla [2021] studied Pandora’s Problem with commitment, when,

similarly to what happens in online selection problems like secretary or prophet inequalities, only

the reward in the last opened box can be collected. Chawla et al. [2021, 2020] investigated what

happens when the assumption on the independence of the random rewards in the boxes is dropped,

Alaei et al. [2021] introduced the revenue maximization version of the problem, while Bechtel et al.

[2022] considered a delegated version of Pandora’s problem. Finally, Pandora’s problem has also

been studied from the learning perspective, both in the sample complexity framework [Guo et al.

2021], and in online learning [Gatmiry et al. 2022; Gergatsouli and Tzamos 2022].

2 PRELIMINARIES
In Pandora’s problem there are 𝑛 boxes, containing hidden values𝑉𝑖 which are distributed according

to the independent non-negative distributions 𝐷𝑖 . We denote by supp the union of the supports of

these distributions. The cost of inspecting a set of boxes is given by a combinatorial cost function

𝑐 ∶ 2(︀𝑛⌋︀ → R≥0, where (︀𝑛⌋︀ denotes the set {1, . . . , 𝑛}. We assume that 𝑐 is always normalized and

monotone, i.e, 𝑐(∅) = 0 and 𝑆 ⊆ 𝑇 implies 𝑐(𝑆) ≤ 𝑐(𝑇 ). We also use (𝑥)+ to denote max(𝑥, 0) for
any number 𝑥 ∈ R.
We denote an instance of the problem by ℐ = (𝐷1, . . . , 𝐷𝑛, 𝑐). Given an instance ℐ , a strategy 𝜋

for ℐ inspects the boxes in a sequential manner where each inspection of box 𝑖 reveals its hidden

(random) value 𝑉𝑖 . At each round the strategy may choose any uninspected box to inspect next, or

it may halt and attain as utility the difference between the largest observed value and the cost of

the set of opened boxes. The decisions are based on the given instance and the sequence of opened

boxes and realized values so far. Given a strategy 𝜋 for ℐ , we use the following notation:
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● 𝑆(𝜋) - the (random) ordered set of boxes opened by 𝜋 .

● 𝑉 (𝜋) ∶= max𝑖∈𝑆(𝜋)𝑉𝑖 - the maximum value observed by 𝜋 . We also refer to this as the reward

obtained by 𝜋 .

● u(𝜋) ∶= E (︀𝑉 (𝜋)⌋︀ − E (︀𝑐(𝑆(𝜋))⌋︀ - the expected utility (i.e., value minus cost) achieved by 𝜋 .

Note that the quantities defined above depend on the given instance. When not clear from the

context, we shall use u (ℐ ;𝜋) to denote the expected utility of strategy 𝜋 for instance ℐ .
A randomized strategy can toss coins before every decision point. Note that these coins can be

tossed a priori before the first box is inspected. Therefore every randomized strategy is a distribution

over deterministic strategies. In particular, for every randomized strategy there is a deterministic

strategy that achieves at least the same utility (the one with the highest utility in the support of the

distribution).

Given an instance ℐ , we denote by Π the set of all strategies for ℐ . An optimal strategy 𝜋∗ is
a strategy that maximizes the utility, i.e., 𝜋∗ = arg max𝜋∈Π u(𝜋). By the paragraph above, we can

assume without loss of generality that 𝜋∗ is deterministic. Note also that if there is some 𝑖 for

which E (︀𝑉𝑖⌋︀ =∞, then the strategy that opens 𝑖 and halts achieves infinite utility. We thus assume

that all distributions 𝐷𝑖 have finite expectations.

A fixed order strategy 𝜋 is a strategy in which the order of inspection is non-adaptive. Formally,

such a strategy is characterized by a permutation 𝜎 ∶ (︀𝑛⌋︀ → (︀𝑛⌋︀ such that at every round 𝑖 , the

strategy either opens the box 𝜎(𝑖), or halts. A strategy 𝜋 is called a fixed order strategy with
thresholds 𝑡1, . . . , 𝑡𝑛 ∈ R if it is fixed order, and at every round 𝑖 , 𝜋 halts if and only if the maximum

value inspected so far is at least 𝑡𝑖 . The proof of the following observation is deferred to the full

version of the paper.

Observation 2.1. For every permutation 𝜎 , the optimal strategy with fixed order 𝜎 is a fixed order

strategy with thresholds.

A Bernoulli instance is an instance where all distributions 𝐷𝑖 are weighted Bernoulli distributions,

e.g., with probability 0.7𝑉𝑖 = 18 and otherwise𝑉𝑖 = 0. An impulsive strategy for a Bernoulli instance
is a fixed order strategy that immediately halts if the value of the currently inspected box is non-zero

(the strategy can also halt if the currently observed value is zero). An example of such a strategy is:

inspect box 1 and halt if its value is non-zero. Otherwise, inspect box 2 and halt if its value is non-

zero. Otherwise, inspect box 7 and halt (regardless of the findings). An example of a non-impulsive

strategy is: inspect box 1. If its value is non-zero, inspect box 2 and halt. Otherwise, inspect box 3

and halt. Note that an impulsive strategy is a fixed order strategy, where each threshold equals

the weight of its corresponding Bernoulli box (except for the threshold corresponding to the last

box, which equals 0). We also remark that the empty strategy which halts immediately without

inspecting any boxes is considered an impulsive strategy.

Combinatorial functions. In this paper we study combinatorial cost functions. In particular, given

a base set 𝑋 of elements, we say that a function 𝑐 ∶ 2𝑋 → R≥0 is

● submodular if 𝑐(𝑥 ⋃︀ 𝐵) ≤ 𝑐(𝑥 ⋃︀ 𝐴) for all 𝐴 ⊆ 𝐵 ⊆ 𝑋 , 𝑥 ∈ 𝑋 ∖ 𝐵, where 𝑐(𝑥 ⋃︀ 𝑆) ∶= 𝑐(𝑆 ∪ {𝑥}) −
𝑐(𝑆) denotes the marginal contribution of element 𝑥 to set 𝑆.

● fractionally subadditive (XOS) if there exists a family of linear function {𝑐𝑖} such that

𝑐(𝐴) = max𝑖 𝑐𝑖(𝐴), for all 𝐴 ⊆ 𝑋 .

● subadditive if 𝑐(𝐴 ∪ 𝐵) ≤ 𝑐(𝐴) + 𝑐(𝐵) for all 𝐴,𝐵 ⊆ 𝑋 .

It is known that submodular ⊂ XOS ⊂ subadditive, with strict inclusions [Lehmann et al. 2006].

Computational setting. The computational problem we consider is the following (Pandora’s)

decision problem: given an instance ℐ , decide whether there exists a strategy 𝜋 for ℐ that achieves
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positive utility, i.e, u (ℐ ;𝜋) > 0. An algorithm for this problem gets access to the given cost function

via cost queries (analogous to value queries for a combinatorial valuation function); namely, given

a set 𝑆 of elements, a cost query returns 𝑐(𝑆).

3 IMPULSIVE OPTIMAL STRATEGIES FOR BERNOULLI INSTANCES
In this section, we prove our main structural result for the special case of Bernoulli instances.

Theorem 3.1. For every Bernoulli instance with a submodular cost function there exists an optimal
strategy that is impulsive.

The crux of the proof of Theorem 3.1 is captured by the following Lemma, which is the main

technical result of the paper.

Lemma 3.2. Let ℐ be a Bernoulli instance with a submodular cost function. If there exists an optimal
strategy for ℐ of the following form:
● Inspect some first box, denoted 𝑟 , that follows the distribution𝑉𝑟 = 𝑣𝑟 > 0 with probability 𝑝𝑟 > 0.
● If 𝑉𝑟 = 𝑣𝑟 , execute an impulsive sub-strategy 𝜋𝑌 .
● If 𝑉𝑟 = 0, execute an impulsive sub-strategy 𝜋𝑁 .

Then, there exists an optimal strategy for ℐ which is impulsive.

Before proving Lemma 3.2, we show how it implies Theorem 3.1.

Proof of Theorem 3.1. We prove this by induction on the number of boxes 𝑛. For 𝑛 = 1, the

claim is trivially true, since every strategy is an impulsive strategy. Assume by induction that for

any Bernoulli instance ℐ′ on 𝑛−1 boxes with a submodular cost function there exists a deterministic

optimal strategy that is impulsive. Let ℐ = (𝐷1, . . . , 𝐷𝑛, 𝑐) be a Bernoulli instance with 𝑛 boxes

whose cost function is submodular, and let 𝜋∗ be a deterministic optimal strategy for ℐ . Since the
strategy 𝜋∗ is deterministic, it either does not open any box (and thus 𝜋∗ is an impulsive strategy),

or there exists a box 𝑖 ∈ (︀𝑛⌋︀ that it inspects first. Note that if 𝑉𝑖 = 0 with probability 1, then 𝜋 ′can
be weakly improved by skipping 𝑖 and proceeding to the next box: the value obtained by this new

strategy is the same for any realization of the boxes, but the incurred cost is weakly improved (by

monotonicity of the cost function). Thus we can assume without loss of generality that 𝑉𝑖 = 𝑣𝑖 > 0

with some probability 𝑝𝑖 > 0, and 𝑉𝑖 = 0 otherwise.

For each of the two possible realizations of box 𝑖 , the instance remaining after opening box 𝑖 is

either ℐ𝑁 = (𝐷1, . . . , 𝐷𝑖−1, 𝐷𝑖+1, . . ., 𝐷𝑛, 𝑐
′) if 𝑉𝑖 = 0, or ℐ𝑌 = (𝐷 ′

1
, . . . , 𝐷 ′𝑖−1

, 𝐷 ′𝑖+1
, . . ., 𝐷 ′𝑛, 𝑐

′) if 𝑉𝑖 = 𝑣𝑖 ,
where 𝑐′ ∶ (︀𝑛⌋︀ ∖ {𝑖} → R≥0 is the cost function 𝑐′(𝑆) = 𝑐(𝑆 ∪ {𝑖}) − 𝑐({𝑖}) = 𝑐(𝑆 ⋃︀ {𝑖}), and 𝐷 ′𝑗
is the weighted Bernoulli distribution of (𝑣 𝑗 − 𝑣𝑖)+ with probability 𝑝 𝑗 where 𝐷 𝑗 is the Bernoulli

distribution of having a value of 𝑣 𝑗 with probability 𝑝 𝑗 . Note that since 𝑐
′
is the marginal function of

𝑐 given {𝑖} and since 𝑐 is submodular, then 𝑐′ is a submodular function. By the induction hypothesis

(since ℐ𝑌 ,ℐ𝑁 have submodular cost functions and 𝑛 − 1 boxes), there exist two optimal strategies

𝜋𝑌
, 𝜋𝑁

for ℐ𝑌 ,ℐ𝑁 , respectively, that are impulsive. Thus there exists an optimal strategy that

opens box 𝑖 , if its value is non-zero executes the sub-strategy 𝜋𝑌
, and otherwise it execute the

sub-strategy 𝜋𝑁
. By applying Lemma 3.2, we establish that there exists an optimal strategy for ℐ

that is impulsive. □

The remainder of this section is dedicated to the proof of Lemma 3.2. In Section 3.1 we make the

required preparation, and in Section 3.2 we provide the full proof of the lemma.

3.1 Setup for Lemma 3.2
In this section we introduce the notation and constructs that we shall need for the proof of Lemma

3.2. Let ℐ = (𝐷𝑟 , 𝐷1, . . . , 𝐷𝑛, 𝑐) be a Bernoulli instance where 𝑐 is a submodular cost function. For
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every 𝑖 ∈ {𝑟} ∪ (︀𝑛⌋︀, the random value 𝑉𝑖 in box 𝑖 is set to 𝑣𝑖 with probability 𝑝𝑖 , and to 0 otherwise

(with probability 𝑞𝑖 = 1 − 𝑝𝑖 ). We can assume without loss of generality that 𝑣𝑖 > 0 and 𝑝𝑖 > 0 for

every box 𝑖 ∈ {𝑟} ∪ (︀𝑛⌋︀, since otherwise 𝑉𝑖 = 0 with probability 1, in which case any strategy that

does open 𝑖 can be weakly improved by skipping 𝑖 and proceeding as if its value 0 was observed. If

a box 𝑖 satisfies 𝑝𝑖 = 1 then we say it is a deterministic box.
An impulsive (sub-)strategy 𝜋 is given by a tuple of box indices (with no repetitions), e.g, (1, 2, 7)

stands for the impulsive strategy that first inspects box 1 and halts if𝑉1 = 𝑣1, otherwise it proceeds to

inspect box 2 and halts if𝑉2 = 𝑣2, and otherwise it proceeds to inspect box 7 and halts. An impulsive

strategy can also be given by a tuple of impulsive sub-strategies (𝜋1, . . . , 𝜋𝑘), e.g., ((1, 2), (7))
stands for the strategy (1, 2, 7). The empty strategy that does not inspect any box is also considered

an impulsive strategy and is denoted by the tuple (∅). We shall occasionally abuse notation and

identify an impulsive strategy 𝜋 with the set of boxes that form 𝜋 , e.g., 𝑖 ∈ (1, 2, 7) stands for
𝑖 ∈ {1, 2, 7}, and 𝜋 ⊆ {1, 2, 3, 4} means that all boxes outside of {1, 2, 3, 4} are never inspected by 𝜋 .

Let 𝜋∗ be a deterministic optimal strategy for ℐ in the form given by the statement of Lemma 3.2.

Thus, 𝜋∗ first inspects box 𝑟 ; if it observes that 𝑉𝑟 = 𝑣𝑟 then it executes the impulsive sub-strategy

𝜋𝑌
and otherwise it executes the impulsive sub-strategy 𝜋𝑁

. Note that 𝜋𝑌
and 𝜋𝑁

both inspect

boxes with indices from (︀𝑛⌋︀. We can assume without loss of generality that for every 𝑖 ∈ 𝜋𝑌
, we

have 𝑣𝑖 ≥ 𝑣𝑟 : Otherwise 𝜋∗ can be weakly improved by removing 𝑖 from 𝜋𝑌
— note that the reward

obtained in the end of the process is unaffected by the realized value of𝑉𝑖 in this case, and therefore

continuing to the suffix of 𝜋𝑌
after 𝑖 is also optimal. We also assume that each of 𝜋𝑌

and 𝜋𝑁

contains at most one deterministic box, in which case it is the last one in the tuple. This too is

without loss of generality since impulsive strategies always halt after inspecting a deterministic

box. Note that if 𝜋𝑌
is the empty strategy (i.e it halts immediately without opening any boxes),

then 𝜋∗ is an impulsive strategy by itself, and we are done. Thus we assume that 𝜋𝑌
is not empty,

i.e., ⋂︀𝜋𝑌 ⋂︀ ≥ 1. Finally, out of all optimal strategies that satisfy the assumptions above, we also assume

that 𝜋∗ maximizes ⋂︀𝜋𝑌 ⋂︀ + ⋂︀𝜋𝑁 ⋂︀.
Assume towards contradiction that there is no impulsive strategy for ℐ that achieves the same

utility as 𝜋∗. We show that in this case we can replace either 𝜋𝑌
or 𝜋𝑁

by impulsive sub-strategies

of bigger size, without losing utility. This would constitute a contradiction to the definition of 𝜋∗.
Given an impulsive strategy 𝜋 , We denote by 𝑝(𝜋) the probability that one of the boxes inspected

by 𝜋 has a non-zero value, i.e., the probability that there is some 𝑖 ∈ 𝑆(𝜋) such that 𝑉𝑖 = 𝑣𝑖 . We

denote by 𝑞(𝜋) ∶= 1 − 𝑝(𝜋) the probability that 𝑉𝑖 = 0 for every 𝑖 ∈ 𝜋 . For the empty strategy we

define 𝑝(∅) = 0 (or equivalently 𝑞(∅) = 1). Note that by our assumption that 𝑝𝑖 > 0 for every 𝑖 , we

have 𝑝(𝜋) > 0 for every non-empty impulsive strategy, and 𝑝(𝜋) = 1 if and only if 𝜋 contains a

deterministic box.

Observation 3.3. Let𝜋 = (𝑖1, . . . , 𝑖𝑘) ⊆ (︀𝑛⌋︀ be an impulsive strategy. Then𝑝(𝜋) = ∑𝑘
𝑗=1

𝑞(𝑖1,...,𝑖 𝑗−1) ⋅ 𝑝𝑖 𝑗
and 𝑞(𝜋) =∏𝑘

𝑗=1
𝑞𝑖 𝑗 =∏𝑘

𝑗=1
(1 − 𝑝𝑖 𝑗 ).

Note that Observation 3.3 also holds when the coordinates 𝑖 𝑗 are by themselves impulsive sub-

strategies which are not singletons. Also observe that if 𝜋1, 𝜋2
are impulsive strategies such that

𝜋1 ⊆ 𝜋2
, then 𝑝(𝜋1) ≤ 𝑝(𝜋2).

We now introduce notation for the marginal utility achieved by an impulsive (sub) strategy

executed at some point after inspecting box 𝑟 . Note that this quantity depends on whether the

observed value 𝑉𝑟 equals 𝑣𝑟 or 0. We thus introduce notation for both cases, and it shall be useful

to define these utilities conditioned on already having inspected some set of boxes 𝑇 . We also

introduce a third “non-lower-bounded utility” that we shall need.
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Definition 3.4. Given an impulsive strategy 𝜋 ⊆ (︀𝑛⌋︀ and a set of boxes𝑇 ⊆ (︀𝑛⌋︀ such that𝑇 ∩𝜋 = ∅,
we define

● u𝑌 (𝜋 ⋃︀ 𝑇 ) ∶= E )︀max𝑖∈𝑆(𝜋)(𝑉𝑖 − 𝑣𝑟 )+⌈︀−E (︀𝑐 (𝑆(𝜋) ⋃︀ {𝑟} ∪𝑇 )⌋︀, the marginal utility of 𝜋 , given

that 𝑉𝑟 = 𝑣𝑟 and that the boxes in 𝑇 were already opened.

● u𝑁 (𝜋 ⋃︀ 𝑇 ) ∶= E )︀max𝑖∈𝑆(𝜋)(𝑉𝑖)⌈︀ − E (︀𝑐 (𝑆(𝜋) ⋃︀ {𝑟} ∪𝑇 )⌋︀, the marginal utility of 𝜋 , given that

𝑉𝑟 = 0 and that the boxes in 𝑇 were already opened.

● u𝑀(𝜋 ⋃︀ 𝑇 ) ∶= 𝑝(𝜋) ⋅ E )︀max𝑖∈𝑆(𝜋)(𝑉𝑖 − 𝑣𝑟 ) ⋃︀ ∃𝑖 ∈ 𝑆(𝜋) s.t. 𝑉𝑖 = 𝑣𝑖⌈︀ − E (︀𝑐 (𝑆(𝜋) ⋃︀ {𝑟} ∪𝑇 )⌋︀.

We write u𝑌 (𝜋),u𝑁 (𝜋),u𝑀(𝜋) instead of u𝑌 (𝜋 ⋃︀ ∅),u𝑁 (𝜋 ⋃︀ ∅),u𝑀(𝜋 ⋃︀ ∅), respectively. We

observe that since 𝑐 is submodular, then for any sets of boxes 𝑇1 ⊆ 𝑇2 that do not intersect 𝜋 , we

have u𝑌 (𝜋 ⋃︀ 𝑇1) ≤ u𝑌 (𝜋 ⋃︀ 𝑇2),u𝑁 (𝜋 ⋃︀ 𝑇1) ≤ u𝑁 (𝜋 ⋃︀ 𝑇2) and u𝑀(𝜋 ⋃︀ 𝑇1) ≤ u𝑀(𝜋 ⋃︀ 𝑇2) .

Observation 3.5. Let 𝜋 = (𝑖1, . . . , 𝑖𝑘) ⊆ (︀𝑛⌋︀ be an impulsive strategy. Then:

u𝑁 (𝜋) =
𝑘

∑
𝑗=1

𝑞(𝑖1,...,𝑖 𝑗−1) ⋅ u𝑁 (𝑖 𝑗 ⋃︀ {𝑖ℓ}ℓ∈(︀𝑗−1⌋︀) =
𝑘

∑
𝑗=1

𝑞(𝑖1,...,𝑖 𝑗−1) ⋅ (𝑝𝑖 𝑗 ⋅ 𝑣𝑖 𝑗 − 𝑐 (𝑖 𝑗 ⋃︀ {𝑟} ∪ {𝑖ℓ}ℓ∈(︀𝑗−1⌋︀)) .

u𝑌 (𝜋) =
𝑘

∑
𝑗=1

𝑞(𝑖1,...,𝑖 𝑗−1) ⋅ u𝑌 (𝑖 𝑗 ⋃︀ {𝑖ℓ}ℓ∈(︀𝑗−1⌋︀) =
𝑘

∑
𝑗=1

𝑞(𝑖1,...,𝑖 𝑗−1) ⋅ (𝑝𝑖 𝑗 ⋅ (𝑣𝑖 𝑗 − 𝑣𝑟)
+ − 𝑐 (𝑖 𝑗 ⋃︀ {𝑟} ∪ {𝑖ℓ}ℓ∈(︀𝑗−1⌋︀)) .

u𝑀(𝜋) =
𝑘

∑
𝑗=1

𝑞(𝑖1,...,𝑖 𝑗−1) ⋅ u𝑀(𝑖 𝑗 ⋃︀ {𝑖ℓ}ℓ∈(︀𝑗−1⌋︀) =
𝑘

∑
𝑗=1

𝑞(𝑖1,...,𝑖 𝑗−1) ⋅ (𝑝𝑖 𝑗 ⋅ (𝑣𝑖 𝑗 − 𝑣𝑟) − 𝑐 (𝑖 𝑗 ⋃︀ {𝑟} ∪ {𝑖ℓ}ℓ∈(︀𝑗−1⌋︀)) .

The corresponding expressions u𝑁 (𝜋 ⋃︀ 𝑇 ),u𝑌 (𝜋 ⋃︀ 𝑇 ),u𝑀(𝜋 ⋃︀ 𝑇 ) for a set 𝑇 ⊆ (︀𝑛⌋︀ such that

𝑇 ∩ 𝜋 = ∅ follow the same equations above with the addition of a “𝑇 ” term after every “⋃︀” symbol.

As a concrete example, for the strategy 𝜋 = (1, 2, 7) and set of boxes 𝑇 = {4, 5}, we have
u𝑁 (𝜋 ⋃︀ 𝑇 ) = 𝑝1𝑣1 − 𝑐(1 ⋃︀ {𝑟, 4, 5}) +𝑞1 (𝑝2𝑣2 − 𝑐(2 ⋃︀ {𝑟, 4, 5, 1})) +𝑞(1,2) (𝑝7𝑣7 − 𝑐(7 ⋃︀ {𝑟, 4, 5, 1, 2})) .
Furthermore, observe that

u(𝜋∗) = 𝑝𝑟 ⋅ (𝑣𝑟 + u𝑌 (𝜋𝑌 )) − 𝑐(𝑟) + 𝑞𝑟 ⋅ u𝑁 (𝜋𝑁 ).
Our goal is to replace either 𝜋𝑌

or 𝜋𝑁
with a strategy 𝜋 that achieves at least as much marginal

utility, but (potentially) inspects more boxes. This will constitute a contradiction to the assumption

that 𝜋∗ maximizes ⋂︀𝜋𝑌 ⋂︀ + ⋂︀𝜋𝑁 ⋂︀.
The proof of the following straightforward observation can be found in the full version of the

paper.

Observation 3.6. Let 𝜋 ⊆ (︀𝑛⌋︀ be an impulsive strategy. Then for any set of boxes 𝑇 ⊆ (︀𝑛⌋︀ such
that 𝑇 ∩ 𝜋 = ∅, we have:
● u𝑀(𝜋 ⋃︀ 𝑇 ) ≤ u𝑌 (𝜋 ⋃︀ 𝑇 ) ≤ u𝑁 (𝜋 ⋃︀ 𝑇 ).
● u𝑀(𝜋 ⋃︀ 𝑇 ) = u𝑁 (𝜋 ⋃︀ 𝑇 ) − 𝑝(𝜋) ⋅ 𝑣𝑟 .
● If 𝜋 ⊆ 𝜋𝑌

, then u𝑀(𝜋 ⋃︀ 𝑇 ) = u𝑌 (𝜋 ⋃︀ 𝑇 ).

Impulsive Strategies with Dummies. Our proof makes use of a particular family of strategies

that are distributions over impulsive strategies: an impulsive strategy with dummies is given by a

(regular) impulsive strategy 𝜋 , and a subset of boxes 𝑃 ⊆ 𝜋 . The strategy is denoted 𝜋𝑃 , and proceeds
exactly as 𝜋 would, with the following single difference: when considering index 𝑖 ∈ 𝜋 , if it is also
the case that 𝑖 ∉ 𝑃 (i.e., 𝑖 ∈ 𝜋 ∖𝑃 ), then instead of inspecting box 𝑖 the strategy rather only halts with

probability 𝑝𝑖 and otherwise proceeds to the next coordinate of the tuple. We refer to the boxes

in 𝜋 ∖ 𝑃 as dummy boxes. As an example, the strategy (2, 1, 4, 7){1,7} first halts with probability

𝑝2, then, if it did not halt it proceeds to inspect box 1 and halts if 𝑉1 = 𝑣1, otherwise it halts with
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probability 𝑝4, and then, if it did not halt it proceeds to inspect box 7 and halts. Observe that such a

strategy is a distribution over deterministic impulsive strategies. For example, (2, 1, 4, 7){1,7} equals
the empty strategy with probability 𝑝2, the strategy (1) with probability 𝑞2 ⋅ 𝑝4, and the strategy

(1, 7) with probability 𝑞(2,4) = 𝑞2 ⋅ 𝑞4. The marginal utility quantities in Definition 3.4 carry over to

impulsive strategies with dummies. For example, given the strategy 𝜋 = (2, 1, 4, 7), subset of boxes
𝑃 = {1, 7} and another set of boxes 𝑇 = {4, 5} that has presumably already been opened, we have

u𝑀(𝜋𝑃 ⋃︀ 𝑇 ) = 𝑞2 (𝑝1(𝑣1 − 𝑣𝑟 ) − 𝑐(1 ⋃︀ {𝑟, 4, 5})) + 𝑞(2,1,4) (𝑝7(𝑣7 − 𝑣𝑟 ) − 𝑐(7 ⋃︀ {1} ∪ {𝑟, 4, 5})) .
Note that the value and cost terms corresponding to boxes 1 and 7 are multiplied by the factors 𝑞2

and 𝑞(2,1,4), respectively, and that these are the same factors these terms are multiplied by in the

expression for the utility of 𝜋 . Also note that 𝑇 ∩ 𝜋 ≠ ∅ in this example, but we allow this since

the strategy we are computing the utility for, 𝜋𝑃 , never inspects boxes from 𝑇 . Furthermore, the

expression 𝑝(𝜋𝑃 ) — the probability that one of the boxes inspected by 𝜋𝑃 has a non-zero value — is

also well defined. E.g, in the example above this probability equals 𝑞2𝑝1 + 𝑞(2,1,4)𝑝7.

Observation 3.6 also carries over to impulsive strategies with dummies, where the third bullet

there holds for any such strategy 𝜋𝑃 where 𝑃 ⊆ 𝜋𝑌 . Finally, observe that for 𝑃 = ∅ we have that 𝜋𝑃
is the empty strategy, and that for 𝑃 = 𝜋 we have that 𝜋𝑃 coincides with 𝜋 .

3.2 Proof of Lemma 3.2
The first step of the proof of Lemma 3.2 is the following inequality.

Lemma 3.7. It holds that 𝑝(𝜋𝑌 ) < 𝑝(𝜋𝑁 ).

Proof. Assume towards contradiction that 𝑝(𝜋𝑌 ) ≥ 𝑝(𝜋𝑁 ). This implies

u𝑁 (𝜋𝑌 ) = u𝑌 (𝜋𝑌 ) + 𝑝(𝜋𝑌 )𝑣𝑟 ≥ u𝑌 (𝜋𝑁 ) + 𝑝(𝜋𝑁 )𝑣𝑟 ≥ u𝑁 (𝜋𝑁 ) ≥ u𝑁 (𝜋𝑌 ) ,
where the equality and the second inequality hold by Observation 3.6, the first inequality holds by

the optimality of 𝜋𝑌
for the scenario that 𝑉𝑟 = 𝑣𝑟 , and the last inequality holds by the optimality of

𝜋𝑁
for the scenario that 𝑉𝑟 = 0.

Thus all expressions in the above chain are equal and in particular we have u𝑁 (𝜋𝑌 ) = u𝑁 (𝜋𝑁 ).
This implies that the strategy 𝜋 ′ that first inspects 𝑟 and then executes 𝜋𝑌

regardless of the

realization of𝑉𝑟 is also optimal. Now consider the impulsive strategy 𝜋 ′′ = (𝜋𝑌 , 𝑟). Since 𝑣𝑖 ≥ 𝑣𝑟 for
any 𝑖 ∈ 𝜋𝑌

, then the maximum value observed by 𝜋 ′′ coincides with that of 𝜋 ′ for any realization

of the boxes. On the other hand the cost incurred by 𝜋 ′′ is weakly less then that of 𝜋 ′, again for

any realization of the boxes. Thus the impulsive strategy 𝜋 ′′ is optimal as well, a contradiction. □

The following lemma is the main technical tool needed for the rest of the proof.

Lemma 3.8. Let 𝜋 ⊆ (︀𝑛⌋︀ be any impulsive strategy, and let 𝜋 = 𝐴 ⊍ 𝐵 be a partition of the set of
boxes corresponding to 𝜋 . Then we have u𝑁 (𝜋) ≤ u𝑁 (𝜋𝐴 ⋃︀ 𝐵) + u𝑁 (𝜋𝐵).

Proof. Let 𝜋,𝐴, 𝐵 be as in the lemma statement. Recall that the expressions in the inequality are

each made up of (expected) value terms and (expected) cost terms. We first show that the value terms

cancel out. Explicitly, we show that E )︀max𝑖∈𝑆(𝜋)(𝑉𝑖)⌈︀ = E )︀max𝑖∈𝑆(𝜋𝐴)(𝑉𝑖)⌈︀ + E )︀max𝑖∈𝑆(𝜋𝐵)(𝑉𝑖)⌈︀.
To see this, denote 𝜋 without loss of generality as 𝜋 = (1, . . . , 𝑘). Then, for any 𝑖 ∈ (︀𝑘⌋︀, the

value term corresponding to 𝑖 when expanding E )︀max𝑖∈𝑆(𝜋)(𝑉𝑖)⌈︀ is 𝑞(1,....,𝑖−1)𝑝𝑖𝑣𝑖 . Furthermore,

regardless of whether 𝑖 ∈ 𝐴 or 𝑖 ∈ 𝐵, this would also be the value term corresponding to 𝑖 when

expanding the right-hand side of the equation — if 𝑖 ∈ 𝐴 then this would appear in the expansion of

E )︀max𝑖∈𝑆(𝜋𝐴)(𝑉𝑖)⌈︀ and if 𝑖 ∈ 𝐵 then this would appear in the expansion of E )︀max𝑖∈𝑆(𝜋𝐵)(𝑉𝑖)⌈︀. In
fact, this last discussion also shows:
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Observation 3.9. For any impulsive strategy 𝜋 ⊆ (︀𝑛⌋︀ and for any partition 𝜋 = 𝐴 ⊍ 𝐵 of the set of

boxes corresponding to 𝜋 , we have 𝑝(𝜋) = 𝑝(𝜋𝐴) + 𝑝(𝜋𝐵).

It remains to handle the cost terms. For ease of exposition we omit the “{𝑟}” terms inside the

conditional cost terms. This has no effect on the proof. Thus, in the remainder of the proof we

establish the following inequality:

E (︀𝑐 (𝑆(𝜋𝐴) ⋃︀ 𝐵)⌋︀ + E (︀𝑐 (𝑆(𝜋𝐵))⌋︀ − E (︀𝑐 (𝑆(𝜋))⌋︀ ≤ 0. (1)

We prove inequality (1) by induction on ⋃︀𝐴⋃︀ + ⋃︀𝐵⋃︀, and we start with the base case ⋃︀𝐴⋃︀ + ⋃︀𝐵⋃︀ = 0. In

this case, 𝜋 is the empty strategy implying that all three summands in inequality (1) equal 0, and

the inequality follows.

We now assume that ⋃︀𝐴⋃︀ + ⋃︀𝐵⋃︀ ≥ 1. Denote 𝜋 again without loss of generality as 𝜋 = (1, . . . , 𝑘),
where 𝑘 = ⋃︀𝐴⋃︀ + ⋃︀𝐵⋃︀. We expand each of the expressions in inequality (1):

E (︀𝑐 (𝑆(𝜋))⌋︀ =
𝑘

∑
𝑖=1

𝑞(1,...,𝑖−1) ⋅ 𝑐 (𝑖 ⋃︀ {1, . . . , 𝑖 − 1})

E (︀𝑐 (𝑆(𝜋𝐵))⌋︀ =∑
𝑖∈𝐵

𝑞(1,...,𝑖−1) ⋅ 𝑐 (𝑖 ⋃︀ {1, . . . , 𝑖 − 1} ∩ 𝐵)

E (︀𝑐 (𝑆(𝜋𝐴) ⋃︀ 𝐵)⌋︀ =∑
𝑖∈𝐴

𝑞(1,...,𝑖−1) ⋅ 𝑐 (𝑖 ⋃︀ {1, . . . , 𝑖 − 1} ∪ 𝐵)

By plugging these into inequality (1) and taking out common “𝑞” factors, we get the equivalent

inequality

∑
𝑖∈𝐴

𝑞(1,...,𝑖−1) ⋅ (︀𝑐 (𝑖 ⋃︀ {1, . . . , 𝑖 − 1} ∪ 𝐵) − 𝑐 (𝑖 ⋃︀ {1, . . . , 𝑖 − 1})⌋︀ (2)

+∑
𝑖∈𝐵

𝑞(1,...,𝑖−1) ⋅ (︀𝑐 (𝑖 ⋃︀ {1, . . . , 𝑖 − 1} ∩ 𝐵) − 𝑐 (𝑖 ⋃︀ {1, . . . , 𝑖 − 1})⌋︀ (3)

≤ 0

We now split to two cases. In the first (easy) case we assume that 𝑘 ∈ 𝐴, i.e., the last box potentially
to be inspected by 𝜋 is a box from𝐴. Note that in this case we have {1, . . . , 𝑘 −1}∪𝐵 = {1, . . . , 𝑘 −1},
and thus the summand in line (2) corresponding to 𝑖 = 𝑘 cancels out and equals 0. Therefore, if we

denote 𝜋(𝑘) ∶= (1, . . . , 𝑘 − 1), then inequality (1) is equivalent to

E [︀𝑐 (𝑆 (𝜋(𝑘)
𝐴∖{𝑘}) ⋃︀ 𝐵)⌉︀ + E [︀𝑐 (𝑆 (𝜋

(𝑘)
𝐵 ))⌉︀ − E [︀𝑐 (𝑆 (𝜋

(𝑘)))⌉︀ ≤ 0,

which holds by the induction hypothesis.

We now handle the case 𝑘 ∈ 𝐵. Note that if 𝐴 = ∅ and 𝐵 = (︀𝑘⌋︀, then inequality (1) holds trivially

— the summands in line (2) do not exist, and the summands in line (3) cancel out. We thus assume

that ⋃︀𝐴⋃︀ ≥ 1.

The rest of the proof involves a systematic manipulation of the inequality. Mostly, we shall make

repeated use of the following observation, which we term the “cancellation lemma”. and whose

simple proof can be found in the full version of the paper. We use colors in the lemma statement so

that it will be easier to see how we apply it in the rest of the proof.

Lemma 3.10. (Cancellation Lemma) For every cost function 𝑐 ∶ 2(︀𝑛⌋︀ → R≥0, subset 𝑇 ⊆ (︀𝑛⌋︀ and
elements ℎ, ℓ ∈ (︀𝑛⌋︀ ∖𝑇 , we have

𝑐 (ℎ ⋃︀ 𝑇 ∪ {ℓ}) − 𝑐 (ℓ ⋃︀ 𝑇 ∪ {ℎ}) = 𝑐 (ℎ ⋃︀ 𝑇 ) − 𝑐 (ℓ ⋃︀ 𝑇 ) .
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Denote 𝐴 = {𝑎1, . . . , 𝑎𝑤}, where𝑤 = ⋃︀𝐴⋃︀ ≥ 1 and where the order 𝑎1, . . . , 𝑎𝑤 is consistent with the

relative ordering of 𝐴 in 𝜋 , i.e., 𝑎1 < ⋯ < 𝑎𝑤 . Thus we can rewrite line (2) as follows:

𝑤

∑
𝑖=1

𝑞(1,...,𝑎𝑖−1) ⋅ (︀𝑐 (𝑎𝑖 ⋃︀ {𝑎1, . . . , 𝑎𝑖−1} ⊍ 𝐵) − 𝑐 (𝑎𝑖 ⋃︀ {1, . . . , 𝑎𝑖 − 1})⌋︀ (4)

For each 𝑖 = 1, . . . ,𝑤 we shall refer to the corresponding summand in the above sum as the “𝑎𝑖-

summand”. We can also rewrite the summand in line (3) corresponding to 𝑖 = 𝑘 (recall that we are

in the case that 𝑘 ∈ 𝐵) as
𝑞(1,...,𝑘−1) ⋅ (︀𝑐 (𝑘 ⋃︀ 𝐵 ∖ {𝑘}) − 𝑐 (𝑘 ⋃︀ (𝐵 ∖ {𝑘}) ⊍ {𝑎1, . . . , 𝑎𝑤−1, 𝑎𝑤})⌋︀ .

and we shall refer to it as the “𝑘-summand”. Note the coloring of 𝑘 and 𝑎𝑤 , highlighting their roles

in the (first upcoming) application of the cancellation lemma. Consider the 𝑎𝑤-summand:

𝑞(1,...,𝑎𝑤−1) ⋅ (︀𝑐 (𝑎𝑤 ⋃︀ {𝑎1, . . . , 𝑎𝑤−1} ⊍ (𝐵 ∖ {𝑘}) ⊍ {𝑘}) − 𝑐 (𝑎𝑤 ⋃︀ {1, . . . , 𝑎𝑤 − 1})⌋︀
We cannot directly apply the lemma on the 𝑘-summand and the 𝑎𝑤-summand because of the

different “𝑞” factors. To get around this issue, denote the difference inside the square parentheses

in the 𝑘-summand by

𝐷 ∶= (︀𝑐 (𝑘 ⋃︀ 𝐵 ∖ {𝑘}) − 𝑐 (𝑘 ⋃︀ (𝐵 ∖ {𝑘}) ⊍ {𝑎1, . . . , 𝑎𝑤−1, 𝑎𝑤})⌋︀ ,
and note that 𝐷 ≥ 0 since 𝑐 is submodular. Furthermore, note that 𝑞(1,...,𝑎𝑤−1) ≥ 𝑞(1,...,𝑘−1). Thus we
can (weakly) increase the 𝑘-summand as follows:

𝑞(1,...,𝑘−1) ⋅𝐷 ≤ 𝑞(1,...,𝑎𝑤−1) ⋅𝐷
= 𝑞(1,...,𝑎𝑤−1) ⋅ (︀𝑐 (𝑘 ⋃︀ 𝐵 ∖ {𝑘}) − 𝑐 (𝑘 ⋃︀ (𝐵 ∖ {𝑘}) ⊍ {𝑎1, . . . , 𝑎𝑤−1, 𝑎𝑤})⌋︀

Now the “𝑞” factors are the same and we can apply the cancellation lemma. Thus we remove the

{𝑘} term from the 𝑎𝑤-summand, which now becomes

𝑞(1,...,𝑎𝑤−1) ⋅ (︀𝑐 (𝑎𝑤 ⋃︀ {𝑎1, . . . , 𝑎𝑤−1} ⊍ (𝐵 ∖ {𝑘})) − 𝑐 (𝑎𝑤 ⋃︀ {1, . . . , 𝑎𝑤 − 1})⌋︀
We also remove the 𝑎𝑤 term from the 𝑘-summand, which now becomes

𝑞(1,...,𝑎𝑤−1) ⋅ (︀𝑐 (𝑘 ⋃︀ 𝐵 ∖ {𝑘}) − 𝑐 (𝑘 ⋃︀ (𝐵 ∖ {𝑘}) ⊍ {𝑎1, . . . , 𝑎𝑤−2, 𝑎𝑤−1})⌋︀ .
Note the coloring of 𝑘 and 𝑎𝑤−1 highlighting the next application of the cancellation lemma.

Consider now the 𝑎𝑤−1-summand:

𝑞(1,...,𝑎𝑤−1−1) ⋅ (︀𝑐 (𝑎𝑤−1 ⋃︀ {𝑎1, . . . , 𝑎𝑤−2} ⊍ (𝐵 ∖ {𝑘}) ⊍ {𝑘}) − 𝑐 (𝑎𝑤−1 ⋃︀ {1, . . . , 𝑎𝑤−1 − 1})⌋︀
As before, we cannot directly apply the cancellation lemma due to the different “q” factors. As

before, we get around this by using the fact that 𝑞(1,...,𝑎𝑤−1−1) ≥ 𝑞(1,...,𝑎𝑤−1) and the fact that 𝑐 is

submodular in order to replace the 𝑞(1,...,𝑎𝑤−1) factor in the 𝑘-summand by the factor 𝑞(1,...,𝑎𝑤−1−1),
making the 𝑘-summand (weakly) larger by doing so.

After the application of the cancellation lemma, we remove the {𝑘} term from the 𝑎𝑤−1-summand.

We also remove the 𝑎𝑤−1 term from the 𝑘-summand, which becomes

𝑞(1,...,𝑎𝑤−1−1) ⋅ (︀𝑐 (𝑘 ⋃︀ 𝐵 ∖ {𝑘}) − 𝑐 (𝑘 ⋃︀ (𝐵 ∖ {𝑘}) ⊍ {𝑎1, . . . , 𝑎𝑤−3, 𝑎𝑤−2})⌋︀ ,
and again note the coloring of 𝑘 and 𝑎𝑤−2 highlighting the next application of the cancellation

lemma. We continue this way, applying the cancellation lemma to the summands corresponding to

the pairs (𝑘, 𝑎𝑤−2) , (𝑘, 𝑎𝑤−3) , . . . , (𝑘,𝑎1).
After the last application, the 𝑘-summand becomes

𝑞(1,...,𝑎1−1) ⋅ (︀𝑐 (𝑘 ⋃︀ 𝐵 ∖ {𝑘}) − 𝑐 (𝑘 ⋃︀ 𝐵 ∖ {𝑘})⌋︀ = 0,
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and the sum of the 𝑎𝑖-summands (Line (4)) is modified by replacing “𝐵” with “𝐵 ∖ {𝑘}”. Thus,
recalling the notation 𝜋(𝑘) ∶= (1, . . . , 𝑘 − 1), we have shown in the above process that

E (︀𝑐 (𝑆(𝜋𝐴) ⋃︀ 𝐵)⌋︀ + E (︀𝑐 (𝑆(𝜋𝐵))⌋︀ − E (︀𝑐 (𝑆(𝜋))⌋︀ ≤

E [︀𝑐 (𝑆 (𝜋(𝑘)𝐴 ) ⋃︀ 𝐵 ∖ {𝑘})⌉︀ + E [︀𝑐 (𝑆 (𝜋
(𝑘)
𝐵∖{𝑘}))⌉︀ − E [︀𝑐 (𝑆 (𝜋

(𝑘)))⌉︀ ,

and the bottom expression is upper-bounded by 0, by the induction hypothesis. This concludes the

proof of Lemma 3.8. □

The remainder of the proof of Lemma 3.2 proceeds as follows. By Lemma 3.7 we have 𝜋𝑁 ∖𝜋𝑌 ≠ ∅,
since otherwise 𝜋𝑁 ⊆ 𝜋𝑌

which implies 𝑝(𝜋𝑁 ) ≤ 𝑝(𝜋𝑌 ). Lemma 3.7 also implies that 𝑝(𝜋𝑌 ) < 1

,i.e., 𝜋𝑌
does not contain a deterministic box. To prove Lemma 3.2 we show that there exists a

non-empty impulsive sub-strategy made from boxes in 𝜋𝑁 ∖ 𝜋𝑌
that we can concatenate to 𝜋𝑌

without decreasing utility. This would constitute a contradiction to the definition of 𝜋∗.
Let𝐴 and 𝐵 be the sets of boxes defined by𝐴 = 𝜋𝑁 ∖𝜋𝑌

, 𝐵 = 𝜋𝑌 ∩𝜋𝑁 ⊆ 𝜋𝑌
. Note that 𝜋𝑁 = 𝐴⊍𝐵

and that 𝐴 ≠ ∅. We can write 𝜋𝑁
as a concatenation of contiguous sub-strategies made up of

boxes from 𝐴 or 𝐵 as follows: 𝜋𝑁 = (𝐵pre,𝐴1, 𝐵1, . . . ,𝐴𝑘 , 𝐵𝑘 ,𝐴suff), where 𝐴 = (⊍𝑘𝑖=1
𝐴𝑘) ⊍𝐴suff, 𝐵 =

𝐵pre ⊍ (⊍𝑘𝑖=1
𝐵𝑘). The only sub-strategies that we allow to be empty in this presentation are 𝐵pre

, for

the case that 𝜋𝑁
starts with a box from 𝐴, and 𝐴suff

, for the case that 𝜋𝑁
ends with a box from 𝐵

(in the latter case we must have 𝑘 ≥ 1 as otherwise 𝐴 = ∅ and we get a contradiction).

We define the strategies 𝜋𝐴 = (𝐴1,𝐴2, . . . ,𝐴𝑘 ,𝐴suff), 𝜋𝐵 = (𝐵pre, 𝐵1, 𝐵2, . . . , 𝐵𝑘), and note the

difference between 𝜋𝐴, 𝜋𝐵
, and 𝜋𝑁

𝐴 , 𝜋𝑁
𝐵 . The former are deterministic strategies, whereas the latter

are strategies with dummies.

Claim 3.11. We have u𝑀 (𝜋𝐴 ⋃︀ 𝜋𝑌 ) < 0.

Proof. Assume towards contradiction that u𝑀 (𝜋𝐴 ⋃︀ 𝜋𝑌 ) ≥ 0. Then by Observation 3.6 we also

have u𝑌 (𝜋𝐴 ⋃︀ 𝜋𝑌 ) ≥ 0. Thus we can concatenate 𝜋𝐴
to 𝜋𝑌

to obtain a new optimal strategy that

contradicts the definition of 𝜋∗ as the maximizer of ⋂︀𝜋𝑌 ⋂︀ + ⋂︀𝜋𝑁 ⋂︀. Formally, consider the strategy

obtained from 𝜋∗ by replacing the strategy 𝜋𝑌
with (𝜋𝑌 , 𝜋𝐴). Then the utility obtained does not

decrease, since

u𝑌 ((𝜋𝑌 , 𝜋𝐴)) = u𝑌 (𝜋𝑌 ) + 𝑞(𝜋𝑌 )u𝑌 (𝜋𝐴 ⋃︀ 𝜋𝑌 ) ≥ u𝑌 (𝜋𝑌 ) .

Thus, the new strategy is optimal as well, and as discussed above we get a contradiction. □

Observe that

u𝑁 )︀(𝜋𝑌 , 𝜋𝐴)⌈︀ ≤ u𝑁 (𝜋𝑁 ) ≤ u𝑁 (𝜋𝑁
𝐴 ⋃︀ 𝐵) + u𝑁 (𝜋𝑁

𝐵 ) ≤ u𝑁 (𝜋𝑁
𝐴 ⋃︀ 𝜋𝑌 ) + u𝑁 (𝜋𝑁

𝐵 ),

where the first inequality holds by the optimality of 𝜋𝑁
for the scenario where 𝑉𝑟 = 0, the second

inequality holds by Lemma 3.8, and the third holds by submodularity of the cost function 𝑐 since

𝐵 ⊆ 𝜋𝑌
. Now, since the strategy (𝜋𝑌 , 𝜋𝐴) is a superset of 𝜋𝑁

, then in particular we have

𝑝(𝜋𝑌 ,𝜋𝐴) ≥ 𝑝(𝜋𝑁 ) = 𝑝(𝜋𝑁
𝐴
) + 𝑝(𝜋𝑁

𝐵
),
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where the second equality holds by Observation 3.9. Therefore, the chain of inequalities above

implies:

u𝑀 )︀(𝜋𝑌 , 𝜋𝐴)⌈︀ = u𝑁 )︀(𝜋𝑌 , 𝜋𝐴)⌈︀ − 𝑝(𝜋𝑌 ,𝜋𝐴)𝑣𝑟

≤ u𝑁 (𝜋𝑁
𝐴 ⋃︀ 𝜋𝑌 ) + u𝑁 (𝜋𝑁

𝐵 ) − (𝑝(𝜋𝑁
𝐴
) + 𝑝(𝜋𝑁

𝐵
)) 𝑣𝑟

= (u𝑁 (𝜋𝑁
𝐴 ⋃︀ 𝜋𝑌 ) − 𝑝(𝜋𝑁

𝐴
)𝑣𝑟) + (u𝑁 (𝜋

𝑁
𝐵 ) − 𝑝(𝜋𝑁

𝐵
)𝑣𝑟)

= u𝑀(𝜋𝑁
𝐴 ⋃︀ 𝜋𝑌 ) + u𝑀(𝜋𝑁

𝐵 ),

where the first and last equalities hold by Observation 3.6. Since u𝑀 )︀(𝜋𝑌 , 𝜋𝐴)⌈︀ = u𝑀 (𝜋𝑌 ) +
𝑞(𝜋𝑌 )u𝑀 (𝜋𝐴 ⋃︀ 𝜋𝑌 ), then the above inequality implies

u𝑀 (𝜋𝑌 ) − u𝑀(𝜋𝑁
𝐵 ) ≤ u𝑀(𝜋𝑁

𝐴 ⋃︀ 𝜋𝑌 ) − 𝑞(𝜋𝑌 )u𝑀 (𝜋𝐴 ⋃︀ 𝜋𝑌 ) . (5)

In the following claim we rule out the case that 𝑘 = 0, i.e, that in 𝜋𝑁
all boxes from 𝐵 are inspected

before all boxes from 𝐴. The proof can be found in the full veresion of the paper.

Claim 3.12. There exist boxes 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 such that 𝜋𝑁
inspects 𝑏 only after inspecting 𝐴, i.e.,

𝑘 ≥ 1.

In the remainder we show that for some 𝑗 ∈ (︀𝑘⌋︀, we can concatenate the (non-empty) strategy

(𝐴1, . . . ,𝐴 𝑗) to 𝜋𝑌
without losing utility. This would constitute a contradiction to the assumption

that 𝜋∗ maximizes ⋂︀𝜋𝑌 ⋂︀ + ⋂︀𝜋𝑁 ⋂︀. To this end we analyze both sides of inequality (5). First, the left

hand side satisfies

0 ≤ u𝑌 (𝜋𝑌 ) − u𝑌 (𝜋𝑁
𝐵 ) = u𝑀 (𝜋𝑌 ) − u𝑀(𝜋𝑁

𝐵 ) (6)

where the equality holds by Observation 3.6 (recall that 𝐵 ⊆ 𝜋𝑌
), and the inequality holds since

𝜋𝑌
is the optimal sub-strategy for the scenario where 𝑉𝑟 = 𝑣𝑟 . For the right hand side we have

the following claim which is derived through a careful algebraic manipulation that mostly applies

Observation 3.5. Its proof can be found in the full version of the paper.

Claim 3.13. The right hand side of inequality (5) satisfies

u𝑀(𝜋𝑁
𝐴 ⋃︀ 𝜋𝑌 ) − 𝑞(𝜋𝑌 )u𝑀 (𝜋𝐴 ⋃︀ 𝜋𝑌 ) ≤

𝑘

∑
𝑗=1

𝑞(𝐵pre,𝐵1,...,𝐵 𝑗−1)𝑝(𝐵 𝑗 )u𝑀 ((𝐴1, . . . ,𝐴 𝑗) ⋃︀ 𝜋𝑌 ) .

We plug the inequality in Claim 3.13 and inequality (6) into inequality (5), to get

0 ≤
𝑘

∑
𝑗=1

𝑞(𝐵pre,𝐵1,...,𝐵 𝑗−1)𝑝(𝐵 𝑗 )u𝑀 ((𝐴1, . . . ,𝐴 𝑗) ⋃︀ 𝜋𝑌 ) (7)

Note that all the factors 𝑞(𝐵pre,𝐵1,...,𝐵 𝑗−1)𝑝(𝐵 𝑗) are strictly positive since 𝜋𝑌
does not have a

deterministic box and 𝐵 is a subset of 𝜋𝑌
. This implies that at least one of the expressions

u𝑀 ((𝐴1, . . . ,𝐴 𝑗) ⋃︀ 𝜋𝑌 ), for 𝑗 ∈ (︀𝑘⌋︀, is non-negative. Choose some 𝑗 that satisfies this. To con-

clude the proof we would like to say that we can concatenate (𝐴1, . . . ,𝐴 𝑗) to 𝜋𝑌
without decreasing

the utility, thus obtaining the desired contradiction, analogously to what we did in the proof of

Claim 3.11. The (small) problem is that there might be boxes 𝑖 ∈ (𝐴1, . . . ,𝐴 𝑗) for which 𝑣𝑖 < 𝑣𝑟 .
To get around this, we note that it cannot be the case that all boxes 𝑖 ∈ (𝐴1, . . . ,𝐴 𝑗) satisfy 𝑣𝑖 < 𝑣𝑟 ,

since the contribution of these boxes to u𝑀 ((𝐴1, . . . ,𝐴 𝑗) ⋃︀ 𝜋𝑌 ) is strictly negative. Consider then

the impulsive strategy with dummies 𝜋 rand = (𝐴1, . . . ,𝐴 𝑗){𝑖⋃︀𝑣𝑖≥𝑣𝑟}∩(𝐴1,...,𝐴 𝑗 ) which is obtained from

(𝐴1, . . . ,𝐴 𝑗) by replacing the inspection of every box 𝑖 for which 𝑣𝑖 < 𝑣𝑟 with a decision to halt
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with probability 𝑝𝑖 and otherwise continue to the next box. Then we have u𝑀 (𝜋 rand ⋃︀ 𝜋𝑌 ) ≥ 0.

Furthermore, by the observation above this strategy has non-empty deterministic strategies in

its support (recall that an impulsive strategy with dummies is a distribution over deterministic

impulsive strategies). Thus, there exists one such strategy, denoted 𝜋diff
, for which u𝑀 (𝜋diff ⋃︀ 𝜋𝑌 ) ≥

0, and which satisfies 𝑣𝑖 ≥ 𝑣𝑟 for every 𝑖 ∈ 𝜋diff
. This in turn implies u𝑌 (𝜋diff ⋃︀ 𝜋𝑌 ) ≥ 0, by

Observation 3.6. We now concatenate 𝜋diff
to 𝜋𝑌

without decreasing the utility, analogously to

what we did in the proof of Claim 3.11, and get a contradiction to the definition of 𝜋∗. This concludes
the proof of Lemma 3.2.

4 REDUCTION TO BERNOULLI INSTANCES
In this section, we show how Theorem 3.1 implies that for any instance with arbitrary distributions

and a submodular cost function there is an optimal strategy with a fixed-order. We do so by

transforming an instance with arbitrary distributions, to an instance with Bernoulli distributions.

We first discretize the support of the distributions using a discretization parameter 𝜖 and by capping

the values by a sufficiently large number (that depends on the distributions and on 𝜖). This leads to

a modified instance with finite support. Then, we replace each box with a finite number of boxes

with weighted Bernoulli distributions. Both transformations maintain several key properties of the

instance. The goal of these transformations is to modify the instance to have only a finite number

of weighted Bernoulli boxes, for which we can apply Theorem 3.1.

Transformation 1: Transformation 𝒯 𝜖
, defined by a parameter 𝜖 > 0, proceeds as follows: given

an instance ℐ = (𝐷1, . . . , 𝐷𝑛, 𝑐), let ^𝜖 ∶= min{^ ≥ 0 ⋃︀ ∑𝑛
𝑖=1
E (︀(𝑉𝑖 − ^)+⌋︀ ≤ 𝜖}. Such a constant ^𝜖 is

well defined for every 𝜖 > 0 since ∑𝑛
𝑖=1
E (︀(𝑉𝑖 − ^)+⌋︀ is a monotone continuous decreasing function

in ^, and the limit as ^ approaches infinity is 0 (see full version of the paper for details). Using

^𝜖 , for every 𝑖 , 𝐷
𝜖
𝑖 is defined to be the distribution of the random variable 𝑉𝑖 = 𝜖 ⋅ ⟨︀min(𝑉𝑖 ,^𝜖)

𝜖
⧹︀. We

remark that since ^𝜖 is finite, then the support of the new set of distributions is finite. Finally, the

output of 𝒯 𝜖
is 𝒯 𝜖(𝐷1, . . . , 𝐷𝑛, 𝑐) = (𝐷𝜖

1
, . . . , 𝐷𝜖

𝑛, 𝑐). The proof of the following proposition can be

found in the full version.

Proposition 4.1. For every instance ℐ and every 𝜖 > 0, let ℐ𝜖 = 𝒯 𝜖(ℐ). Then:
(1) For every strategy 𝜋 on instance ℐ there exists a strategy 𝜋 ′ on instance ℐ𝜖 such that u (ℐ ;𝜋) ≤

u (ℐ𝜖 ;𝜋 ′) + 2𝜖 .
(2) For every strategy 𝜋 ′ on instance ℐ𝜖 there exists a strategy 𝜋 on instance ℐ such that u (ℐ ;𝜋) ≥

u (ℐ𝜖 ;𝜋 ′). Furthermore, if 𝜋 ′ is a fixed-order strategy, then there exists such a fixed-order strategy
𝜋 .

Transformation 2: Transformation 𝒯 receives an instance ℐ = (𝐷1, . . . , 𝐷𝑛, 𝑐) with distributions

with finite supports, and returns a Bernoulli instance by the following process: We can assume

without loss of generality that 0 is in the union of the supports supp, then, we can rename the

elements of the union of the supports in an increasing order supp = {𝑣1, . . . , 𝑣𝑚}, where 0 = 𝑣1 <
𝑣2 < . . . < 𝑣𝑚 . For every 𝑖 ∈ (︀𝑛⌋︀ and 𝑗 ∈ (︀𝑚⌋︀, let 𝐷𝑖, 𝑗 be the weighted Bernoulli distribution that

returns the value 𝑣 𝑗 with probability
P(𝑉𝑖=𝑣𝑗 )
P(𝑉𝑖≤𝑣𝑗 ) , and 0 otherwise (where

0

0
is interpreted as 0). Let

𝑐′ ∶ 2(︀𝑛⌋︀×(︀𝑚⌋︀ → R≥0 be the cost function where for every 𝑆 ⊆ (︀𝑛⌋︀ × (︀𝑚⌋︀,
𝑐′(𝑆) ∶= 𝑐({𝑖 ⋃︀ ∃ 𝑗 ∈ (︀𝑚⌋︀ such that (𝑖, 𝑗) ∈ 𝑆}).

Then 𝒯 (ℐ) = (𝐷1,1, . . . , 𝐷𝑛,𝑚, 𝑐
′). One can easily verify that 𝒯 maintains monotonicity and normal-

ization of the cost function. The following claim shows that it also maintains submodularity of the

cost function, and its proof is deferred to the full version of the paper.
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Proposition 4.2. If 𝑐 is submodular, then 𝑐′ obtained by transformation 𝒯 is also submodular.

In the full version of the paper we show that 𝒯 maintains also MRF, GS, coverage, XOS and

subadditivity of the cost function, but not budget additive.

The next proposition shows that the new instance ℐ′ = 𝒯 (ℐ) is in some sense equivalent to ℐ .
The proof of the following proposition is deferred to the full version of the paper.

Proposition 4.3. For every instance ℐ , let ℐ′ = 𝒯 (ℐ). Then:
(1) For every strategy 𝜋 on instance ℐ , there exists a strategy 𝜋 ′ on instance ℐ′ such that u (ℐ ;𝜋) ≤

u (ℐ′;𝜋 ′).
(2) For every strategy 𝜋 ′ on instance ℐ′, there exists a strategy 𝜋 on instance ℐ such that u (ℐ ;𝜋) ≥

u (ℐ′;𝜋 ′). Furthermore, if 𝜋 ′ is impulsive, then there exists such a fixed-order strategy 𝜋 .

In Section 3 we showed that for weighted Bernoulli instances with submodular costs, there exists

an optimal strategy that is impulsive. We next show that this implies our main theorem:

Theorem 4.4. For every instance ℐ = (𝐷1, . . . , 𝐷𝑛, 𝑐) where 𝑐 is submodular, there exists an optimal
strategy that is a fixed order strategy with thresholds.

Proof. Let 𝜋∗ be an optimal strategy for ℐ and let 𝜋 be the optimal strategy for ℐ among

the strategies with a fixed order. Assume towards contradiction that u (ℐ ;𝜋∗) > u (ℐ ;𝜋). Let
𝜖 = u(ℐ;𝜋

∗)−u(ℐ;𝜋)
4

, and let ℐ𝜖 = 𝒯 𝜖(ℐ). By Proposition 4.1, there exists 𝜋1 such that u (ℐ ;𝜋∗) ≤
u (ℐ𝜖 ;𝜋1) + 2𝜖 . Let ℐ′ = 𝒯 (ℐ𝜖). Then, by proposition 4.3 there exists 𝜋2 such that u (ℐ𝜖 ;𝜋1) ≤
u (ℐ′;𝜋2). By Theorem 3.1 there exists an impulsive strategy 𝜋3 such that u (ℐ′;𝜋2) ≤ u (ℐ′;𝜋3). By
Proposition 4.3 there exists a fixed-order 𝜋4 such that u (ℐ𝜖 ;𝜋4) ≥ u (ℐ′;𝜋3), and by Proposition 4.1

bthere exists a fixed-order 𝜋5 such that u (ℐ ;𝜋5) ≥ u (ℐ𝜖 ;𝜋4). All together we have:
u (ℐ ;𝜋5) ≥ u (ℐ𝜖 ;𝜋4) ≥ u (ℐ′;𝜋3) ≥ u (ℐ′;𝜋2) ≥ u (ℐ𝜖 ;𝜋1) ≥ u (ℐ ;𝜋∗) − 2𝜖 > u (ℐ ;𝜋) ,

which contradicts the assumption that 𝜋 is the optimal fixed-order strategy. □

5 COMPUTATIONAL RESULTS
In this section we show that the task of finding an optimal strategy for Pandora’s problem with

submodular costs does not admit a polynomial time algorithm. In fact, we show a stronger result,

namely that there exists no algorithm for the Pandora’s decision problem that uses a polynomial

number of cost queries. An algorithm for the Pandora’s decision problem takes as input an instance

of the Pandora’s problem with a combinatorial cost function and outputs whether there exists a

strategy yielding strictly positive utility on that instance.
2

5.1 Distinguishing Submodular Functions
To formalize our argument we use the notion of distinguishability of submodular functions [Svitkina

and Fleischer 2011]. We say that an algorithm distinguishes between two cost functions 𝑐1 and 𝑐2 if

it produces different outputs when given oracle access to 𝑐1 versus oracle access to 𝑐2. Here, we

construct a family of cost functions and a baseline cost function that are hard to distinguish using

polynomially many cost queries, similarly to the construction of Svitkina and Fleischer [2011].

Let 𝑋 be a set of 𝑛 boxes, and let 𝛼 = ⌊︂ln𝑛 ⋅
⌋︂
𝑛

5
}︂ and 𝛽 = ⌊︂ ln

2

𝑛
5
}︂. On this set of boxes we define a

2
We remark that even a demand oracle to the cost function, in the sense of Blumrosen and Nisan [2007], would not allow us

to solve the decision problem with polynomially many queries. The reason is that our impossibility result already holds for

matroid rank functions, a strict subclass of gross substitutes, for which a demand query can be simulated by polynomially

many cost queries; see the full version of the paper for definitions of gross substitutes and matroid rank functions.
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“baseline” cost function 𝑐0(𝑆) = min{⋃︀𝑆 ⋃︀, 𝛼}. Then, for any subset 𝑅 ⊆ 𝑋 of boxes with ⋃︀𝑅⋃︀ = 𝛼 , we
define the cost function 𝑐𝑅 :

𝑐𝑅(𝑆) = min{⋃︀𝑆 ⋃︀, 𝛼, 𝛽 + ⋃︀𝑆 ∩ 𝑅𝐶 ⋃︀}. (8)

It is immediate to see that 𝑐0 and 𝑐𝑅 are submodular and differ on sets 𝑆 such that 𝛽 + ⋃︀𝑆 ∩ 𝑅𝐶 ⋃︀ is
strictly smaller than min{𝛼, ⋃︀𝑆 ⋃︀}. Consider now a random setℛ that is drawn uniformly at random

from all the subsets of 𝑋 of cardinality 𝛼 . It is possible to show that no deterministic algorithm can

distinguish 𝑐𝑅 (for a random set 𝑅 ∼ ℛ) from 𝑐0, with high probability. We formalize this result in

the following theorem whose proof is deferred to the full version.

Theorem 5.1. Let 𝒜 be any deterministic algorithm that has a cost oracle access to a submodular
function 𝑐𝑅 ∼ 𝑐ℛ over a set 𝑋 of 𝑛 elements, which outputs a set 𝑆 ⊆ 𝑋 using polynomially many cost
queries. Then, for any sufficiently large 𝑛 we have: P (𝒜 distinguishes 𝑐ℛ from 𝑐0) ≤ 𝑛−1.

Note that, by the proof of Theorem 5.1, 𝑛−1
as a bound on the probability that 𝒜 distinguishes

𝑐ℛ from 𝑐0 can be replaced by 𝑛−𝑏 for any constant 𝑏. The corresponding “sufficiently large 𝑛”

condition would then be 𝑛 > 𝑎+2+𝑏
− ln(0.851) .

5.2 A Family of Difficult Instances
As we show next, the family of submodular cost functions introduced above induces a family of

instances of Pandora’s problem such that (𝑖) the baseline instance admits no strategy that gives

positive utility, and (𝑖𝑖) every other instance in the family admits a strategy obtaining positive

utility.

Formally, fix any large enough 𝑛 and consider the following class of instances of Pandora’s

Problem with submodular cost functions: there is a set 𝑋 of 𝑛 boxes with i.i.d. values distributed

according to the following weighted Bernoulli distribution: the value of every box in𝑋 is𝑀 = 5𝛽 > 0

with probability 𝑝 = 1

𝛼
, and 0 otherwise. For each 𝑅 ⊆ 𝑋 , with ⋃︀𝑅⋃︀ = 𝛼 , we define the instance ℐ𝑅

with the above random values and the cost function 𝑐𝑅 that is given in Equation (8). Moreover,

we construct the baseline instance ℐ0 using the same random variables, but with cost function 𝑐0.

There is a crucial difference between ℐ0 and ℐ𝑅 : With 𝑐𝑅 it is possible to find a subset of 𝛼 boxes

such that only the first 𝛽 of them have non-zero marginal cost, while this is impossible under 𝑐0.

With our choice of𝑀 and 𝑝 it is possible to leverage this property and show the following Lemma,

whose proof is deferred to the full version.

Lemma 5.2. For any sufficiently large 𝑛, no strategy extracts positive utility from ℐ0, while for any
𝑅 there exists a strategy that extracts positive utility from ℐ𝑅 .

5.3 The Computational Impossibility Result
We are ready for the main theorem of the section: since it is not possible to distinguish in polynomial

time between 𝑐𝑅 and the baseline 𝑐0, then it is not possible to assess, in polynomial time, whether an

instance of Pandora’s problem can yield positive utility (as ℐ𝑅) or not (as the baseline instance ℐ0).

This immediately implies that no computationally efficient approximation for Pandora’s problem

with Submodular cost exists.

To formalize our result we introduce the concept of positivity oracle: a (possibly randomized)

algorithm 𝒪 is a positivity oracle for Pandora’s problem with Submodular cost if it takes in input

an instance ℐ of the problem (i.e. knowledge of the distributions of the random rewards and cost

oracle access to the cost function) and outputs an answer to the question whether it exists or not a

strategy 𝜋 such that u (ℐ ;𝜋) > 0. We say that 𝒪 is correct on instance ℐ with a certain probability

𝑝 if it outputs the correct answer to Pandora’s decision problem on that instance with probability

at least 𝑝 , where the probability is with respect to the internal randomization of 𝒪. In other words,
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a positivity oracle is an algorithm for Pandora’s decision problem. We say that a positivity oracle

𝒪 is efficient if there exists a constant 𝑎 (that depends on 𝒪 but not the specific instance) such that

𝒪 issues at most 𝑛𝑎 cost queries with probability 1 on all instances.

Theorem 5.3. Fix any efficient positivity oracle 𝒪 and positive constant Y > 0. Then there exists
an instance ℐ on 𝑛 boxes (for 𝑛 sufficiently large) such that 𝒪 outputs the correct answer on ℐ with
probability at most 0.5 + Y.
Proof. The possibly randomized positivity oracle 𝒪 is just a distribution over deterministic

ones, so for any 𝑅 ⊆ 𝑋 of cardinality 𝛼 and any deterministic positivity oracle 𝑂 , we denote with

ℰ(𝑂,𝑅) the event that 𝑂 gives a different output when receiving ℐ𝑅 and ℐ0 as input. Recall thatℛ
is a set of cardinality 𝛼 drawn uniformly at random. Denote with O (respectively, O𝑑 ) the set of all

the randomized (resp., deterministic) efficient positivity oracles. Yao’s principle gives the following:

min

𝑅
P (ℰ(𝒪, 𝑅)) ≤ min

𝑅
max

𝒪∗∈O
P (ℰ(𝒪∗, 𝑅)) ≤ max

𝑂∈O𝑑

P (ℰ(𝑂,ℛ)) . (9)

Consider the rightmost term; each deterministic positivity oracle𝑂 is an algorithm with cost oracle

access to the underlying submodular cost function, which gives different outputs on ℐ𝑅 and ℐ0 if it

distinguishes 𝑐ℛ from 𝑐0 (see definition of distinguishability), given that the rest of the input is

identical. From Equation (9) we have then:

min

𝑅
P (ℰ(𝒪, 𝑅)) ≤ max

𝑂∈O𝑑

P (ℰ(𝑂,ℛ)) ≤ 1

𝑛
≤ Y, (10)

where the second inequality follows from Theorem 5.1, for any 𝑛 sufficiently large.

What we have shown so far is that there exists a set 𝑅 such that 𝒪 gives the same output on

both ℐ0 and ℐ𝑅 with probability at least 1 − Y even though the correct answer to Pandora’s decision

problem on the two instances is different. Let now 𝒢0, respectively 𝒢𝑅 , be the event that𝒪 is correct

on input ℐ0, respectively ℐ𝑅 . If the probability of 𝒢0 is smaller than 0.5 + Y then there is nothing

else to prove, as we can choose ℐ = ℐ0; otherwise, we have the following:

P (𝒢𝑅) = P (𝒢𝑅 ∩ ℰ(𝒪, 𝑅)) + P (𝒢𝑅 ∖ ℰ(𝒪, 𝑅)) ≤ P (ℰ(𝒪, 𝑅)) + P (𝒢𝐶0 ) ≤ Y + (0.5 − Y) = 0.5.

To see why the previous formula holds we study separately the two summands. The event 𝒢𝑅 ∩
ℰ(𝒪, 𝑅) is clearly contained in ℰ(𝒪, 𝑅), and we know that its probability is smaller than Y by

Equation (10). The event 𝒢𝑅 ∖ ℰ(𝒪, 𝑅), on the other hand, is disjoint from 𝒢0; in fact, we know that

if 𝒪 gives the same output for ℐ0 and ℐ𝑅 , at most one of the two instances receives the correct

answer to its decision problem. Finally, we are under the assumption that P (𝒢0) ≥ 0.5 + Y, thus its
complementary has at most a probability 0.5 − Y to realize. □

The previous result directly implies that no approximation result can be achieved for Pandora’s

problem with submodular cost functions using polynomially many cost queries: assume by contra-

diction that such an algorithm exists, then it would be easy to construct a positivity oracle that

violates the previous theorem, e.g. by repeatedly simulating the algorithm and using concentration.
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