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Abstract

We study fair allocation of indivisible goods among additive agents with feasibility
constraints. In these settings, every agent is restricted to get a bundle among a specified
set of feasible bundles. Such scenarios have been of great interest to the AI community
due to their applicability to real-world problems. Following some impossibility results, we
restrict attention to matroid feasibility constraints that capture natural scenarios, such
as the allocation of shifts to medical doctors and the allocation of conference papers to
referees.

We focus on the common fairness notion of envy-freeness up to one good (EF1). Pre-
vious algorithms for finding EF1 allocations are either restricted to agents with identical
feasibility constraints or allow free disposal of items. An open problem is the existence of
EF1 complete allocations among agents who differ both in their valuations and in their
feasibility constraints. In this work, we make progress on this problem by providing pos-
itive and negative results for several matroid and valuation types. Among other results,
we devise polynomial-time algorithms for finding EF1 allocations in the following settings:
(i) n agents with heterogeneous (non-identical) binary valuations and partition matroids
with heterogeneous capacities; (ii) two agents with heterogeneous additive valuations and
partition matroids with heterogeneous capacities; and (iii) three agents with heterogeneous
binary valuations and identical base-orderable matroid constraints.

1. Introduction

Many real-life problems involve the fair allocation of indivisible items among agents with
different preferences, and with constraints on the bundle that each agent may receive.
Examples include the allocation of course seats among students (Budish, Cachon, Kessler,
& Othman, 2017) and the allocation of conference papers among referees (Garg, Kavitha,
Kumar, Mehlhorn, & Mestre, 2010).

In general, the constraints may be heterogeneous, that is, different agents may have dif-
ferent constraints. For example, consider the allocation of employees among departments
of a company: one department has room for four project managers and two backend engi-
neers, while another department may have room for three backend engineers and five data
scientists. Another example can be found in the way shifts are assigned among medical
doctors, where every doctor has her own schedule limitations. A third example is allocating
course seats among students, where the students’ constraints for course categories depend
on their curricular year and subject of study.
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Our goal is to devise algorithms that find fair allocations of indivisible items among
agents with heterogeneous preferences and feasibility constraints. Let us first explain what
we mean by “fair” and what we mean by “constraints”.

A classic notion of fairness is envy-freeness (EF), which means that every agent (weakly)
prefers his or her bundle to that of any other agent. Since an EF allocation may not exist
when items are indivisible, recent studies focus on its relaxation known as FF1 — envy-free
up to one item (Budish, 2011) — which means that every agent i (weakly) prefers her bundle
to any other agent j’s bundle, up to the removal of the best good (in i’s eyes) from agent
j’s bundle (see Section 2.2 for a formal definition). Without constraints, an EF1 allocation
always exists and can be computed efficiently (Lipton, Markakis, Mossel, & Saberi, 2004).

The constraints of an agent are represented by a set of bundles (subsets of items), that
are considered feasible for the agent. An allocation is feasible if it allocates to each agent a
feasible bundle. We focus on the case when the feasible bundles are the independent sets of
a matroid. This means that (i) the set of feasible bundles is downward-closed — a subset of
a feasible bundle is feasible; (ii) if a feasible bundle S has fewer items than another feasible
bundle T, then it is possible to extend S to a larger feasible bundle by adding some item
from T'. This latter property of “extension by one” makes the notion of EF1 particularly
appropriate for problems of allocation with matroid constraints. A special case of a matroid
is a partition matroid. With partition matroid constraints, the items are partitioned into a
set of categories, each category has a capacity, and the feasible bundles are the bundles in
which the number of items from each category is at most the category capacity.

There are two approaches for handling feasibility constraints in fair allocation. A first
approach is to directly construct allocations that satisfy the constraints, i.e., guarantee
that each agent receives a feasible bundle. This approach was taken recently by Biswas
and Barman (2018, 2019), who study settings with additive valuations, where every agent
values each bundle at the sum of the values of its items. They present efficient algorithms for
computing EF1 allocations when agents have: (i) identical matroid constraints and identical
valuations; or (ii) identical partition matroid constraints, even under heterogeneous (i.e.,
non-identical) valuations (see Section 2.3 for a more detailed description of their algorithm).
However, their algorithms do not handle heterogeneous partition constraints, and do not
handle identical matroid constraints with heterogeneous valuations.

A second approach is to capture the constraints within the valuation function. That is,
the value of an agent for a bundle equals the value of the best feasible subset of that bundle.
This approach seamlessly addresses heterogeneity in both constraints and valuations. The
valuation functions constructed this way are no longer additive, but are submodular (Oxley,
2006). Recently, Babaioff, Ezra, and Feige (2021) and Benabbou, Chakraborty, Igarashi,
and Zick (2021) have independently proved the existence of EF1 allocations in the special
case in which agents have submodular valuations with binary marginals (where adding an
item to a bundle adds either 0 or 1 to its value). Such an allocation can be converted to a
fair and feasible allocation by giving each agent the best feasible subset of his/her allocated
bundle, and disposing of the other items.

However, in some settings, such disposal of items may be impossible. For example, when
allocating shifts to medical doctors, if an allocation rule returns an infeasible allocation and
shifts are disposed to make it feasible, the emergency-room might remain understaffed. A
similar problem may occur when allocating papers to referees, where disposals may leave
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some papers without reviews. The allocation rules developed in the above papers may not
yield EF1 allocations when they are constrained to return feasible allocations (Section 8.1).
Thus, an open problem remains:

Open problem: Given agents with heterogeneous additive valuations and heterogeneous
matroid constraints, which settings admit a complete and feasible FF1 allocation?

1.1 Contribution and Techniques

Feasible-envy. Before presenting our results, we shall discuss what it means to “envy”
in settings with heterogeneous constraints.

As an example, consider an allocation of 8 seats in programming courses among two
students: Alice — an industrial engineering student who is allowed to take only 3 courses;
and Bob — a computer science student who is allowed to take 5 courses. The only feasible
allocation is giving 3 courses to Alice and 5 courses to Bob. Does Alice envy Bob?

e On one hand, Alice might envy Bob even if all courses have the same value. Moreover,
Alice might envy the very fact that she is allowed to take fewer courses than Bob, that
is, she might envy Bob’s constraints. This kind of envy cannot be avoided without
violating the university rules, which is beyond the scope of this paper.

e On the other hand, one may claim that envy is only justified between people who are
a-priori equal. Since Alice is subject to different constraints than Bob, she should not
envy him regardless of which courses she receives, and therefore we should not aim to
avoid such envy.

We take a middle ground between these two extremes: Alice is happy with the constraints
on IE students (after all, she chose to study IE and not CS), but within these constraints,
she would like to receive high-value courses. Therefore, if her three courses are as valuable
as Bob’s best three courses, then she does not envy; but if she receives three low-value
courses while Bob receives five high-value courses, she is envious.!

In general, we say that Alice has a feasible-envy towards Bob if she prefers some subset of
Bob’s bundle, which is feasible for her, over her own bundle. An allocation is feasible-envy-
free (F-EF) if no agent has a feasible-envy towards another agent; it is feasible-envy-free up
to one item (F-EF1) if it becomes F-EF after removing at most one item from an envied
agent bundle (see Section 2.2 for a formal definition). Note that F-EF1 is equivalent to EF1
when agents have identical constraints.

Throughout the paper, we use the notion of F-EF1 under heterogeneous constraints.
In Appendix A we present some alternative (weaker) notions of feasible-envy-freeness, and
show that all our results are valid for these weaker definitions too.

Impossibilities. We present several impossibility results that direct us to the interesting
domain of study. First, if the partition of items into categories is different for different
agents, an F-EF1 allocation may not exist, even for two agents with identical valuations
(Section 8.2). Second, going beyond matroid constraints to natural generalizations such as

1. As a more figurative example, consider a restaurant with two people having different eating capacities.
The low-capacity person would not envy the fact that the high-capacity person eats more food than he
could digest, but he may envy the fact that the high-capacity person eats the tastier food.
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matroid intersection, bipartite graph matching, conflict graph or budget constraints is futile:
even with two agents with identical binary valuations and identical non-matroid constraints,
a complete F-EF1 allocation may not exist (Section 8.3). Third, going beyond EF1 to the
stronger notion of envy-free up to any good (EFX) is also hopeless: even with two agents
with identical valuations and identical uniform matroid constraints, an EFX allocation may
not exist (Section 8.4).

Based on these results, we focus on finding F-EF1 allocations when the agents’ con-
straints are represented by either: (1) partition matroids where all agents share the same
partition of items into categories but may have different capacities; or (2) base-orderable
(BO) matroids — a wide class of matroids containing partition matroids — where all agents
have identical matroid constraints but possibly different valuations.

Algorithms (see Table 1). For partition matroids, the reason that the algorithms of
Lipton et al. (2004) and Biswas and Barman (2018) fail for agents with heterogeneous
capacities is that they rely on cycle removal in the envy-graph. Informally (Section 2.3
for details), these algorithms maintain a directed envy-graph in which each agent points to
every agent he or she envies. The algorithm prioritizes the agents who are not envied, since
giving an item to such agents keeps the allocation EF1. If there are no unenvied agents,
the envy-graph must contain a cycle, which is then removed by exchanging bundles along
the cycle. However, when agents in the cycle have different constraints, this exchange may
not be feasible. Thus, our main challenge is to develop techniques that guarantee that no
envy-cycle are created in the first place. We manage to do so in four settings of interest:

1. There are at most two categories (Section 3).

2. All agents have identical valuations (Section 4).
3. All agents have binary valuations (Section 5).
4. There are two agents (Section 6).

Each setting is addressed by a different algorithm and using a different cycle-prevention
technique.

Beyond partition matroids, we consider the much wider class of matroids, termed base-
orderable (BO) matroids (see Definition 15). This class contains partition matroids, laminar
matroids (an extension of partition matroids where the items in each category can be parti-
tioned into sub-categories), transversal matroids and other interesting matroid structures.
For this class we present algorithms for agents with identical constraints and heterogeneous
additive valuations in the following cases:

5. There are three agents with binary valuations (Section 7.3).
6. There are two agents (Section 7.4).

We also present an algorithm for agents with unary valuations (all items are worth 1 for all
agents) and heterogeneous constraints based on general matroids (Section 7.5).

Our algorithms for partition matroids are strongly-polynomial — they use a polynomial
number of arithmetic operations and polynomial space. The algorithms for general matroids
require, in addition to a polynomial number of arithmetic operations, a polynomial number
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Table 1: A summary of our results in the context of previous results. All results are for

additive valuations.

PE refers to outcomes that are also Pareto-efficient.

BO refers to

base-orderable matroids (Section 7). Asterisks *** denote results by other authors: B&B
is Biswas and Barman (2018), BCIZ,BEF is Benabbou et al. (2021), Babaioff et al. (2021)
(see Section 1), and SSH is Shoshan et al. (2023). @& denotes a positive result; & denotes a
negative result.

of calls to an independence oracle — a function that checks whether a given subset is an

independent set of the matroid.

1.2 Related Work

A recent survey of constraints in fair division is given by Suksompong (2021). Below we
focus on constraints in allocation of indivisible items.
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Capacity constraints. In many settings, there are lower bounds as well as upper bounds
on the total number of items allocated to an agent. This is particularly relevant to the
problem of assigning conference papers to referees (Garg et al., 2010; Long, Wong, Peng, &
Ye, 2013; Lian, Mattei, Noble, & Walsh, 2018). The constraints may be different for each
agent, but there is only one category of items. The same is true in the setting studied by
Ferraioli, Gourves, and Monnot (2014), where each agent must receive exactly k items. A
balanced allocation is an allocation in which all agents receive the same number of items up
to at most a single item. The Round Robin algorithm finds a balanced EF1 allocation for
any number of agents with additive valuations. An algorithm by Kyropoulou, Suksompong,
and Voudouris (2020) finds a balanced EF1 allocation for two agents with general monotone
valuations. It is open whether this result extends to three or more agents. Jojic, Panina,
and Zivaljevic (2021) prove the existence of a balanced allocation in which all agents assign
approximately the same value to all bundles (an “almost consensus” allocation). Note that
constraints imposing a lower bound on the number of items allocated to an agent, such as
balancedness constraints, are not matroid constraints, since they are not downward-closed.

Capacity constraints are common also in matching markets such as doctors—hospitals
and workers—firms; see Klaus, Manlove, and Rossi (2016) for a recent survey. In these
settings, the preferences are usually represented by ordinal rankings rather than by utility
functions, and the common design goals are Pareto-efficiency, stability and strategyproofness
rather than fairness.

Gafni, Huang, Lavi, and Talgam-Cohen (2021) study fair allocation in a related setting
in which items may have multiple copies.

Partition constraints. Fair allocation of items of different categories is studied by Mackin
and Xia (2016) and Sikdar, Adali, and Xia (2017). Each category contains n items, and
each agent must receive exactly one item of each category. Sikdar, Adali, and Xia (2019)
consider an exchange market in which each agent holds multiple items of each category
and should receive a bundle with exactly the same number of items of each category. The
above works focus on designing strategyproof mechanisms. Nyman, Su, and Zerbib (2020)
study a similar setting (they call the categories “houses” and the objects “rooms”), but
with monetary transfers (which they call “rent”).

Following the paper by Biswas and Barman (2018) focusing on EF1 fairness, Hummel
and Hetland (2022b) study partition matroid constraints in combination with a different
fairness notion — the mazimin-share (Budish, 2011); informally, the maximin-share of
an agent is the maximum over all partitions, of the minimum value of a bundle in that
partition. Their algorithm attains a 1/2-factor approximation to this fairness notion for
general partition matroids, and a 2/3-factor approximation for the special case of partition
matroids with a single category.

In a recent paper, Shoshan et al. (2023) presented an algorithm for finding a com-
plete Pareto-efficient and EF1 allocation under identical partition-matroid constraints, when
there are two agents with additive valuations that can be positive and negative.

Matroid constraints. Gourves, Monnot, and Tlilane (2013) study a setting with a single
matroid, where the goal includes building a base of the matroid and providing worst case
guarantees on the agents’ utilities. Gourves, Monnot, and Tlilane (2014) and Gourves and
Monnot (2019) require the union of bundles allocated to all agents to be an independent
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set of the matroid. This by design requires to leave some items unallocated, which is not
allowed in our setting.

Budget constraints. Budget constraints (also called knapsack constraints) assume that
each item has a cost, each agent has a budget, and the feasible bundles for an agent are the
bundles with total cost at most the budget. In this setting, Wu, Li, and Gan (2021) show
that a 1/4-factor EF1 allocation exists. Gan, Li, and Wu (2021) show that a 1/2-factor EF1
allocation exists when the valuations are identical, and an EF1 allocation exists among two
agents with the same budget.

Connectivity constraints. Barrera, Nyman, Ruiz, Su, and Zhang (2015), Bilo, Cara-
giannis, Flammini, Igarashi, Monaco, Peters, Vinci, and Zwicker (2018), and Suksompong
(2019) study another kind of constraint in fair allocation. The goods are arranged on a line,
and each agent must receive a connected subset of the line. Bouveret, Cechlarova, Elkind,
Igarashi, and Peters (2017) and Bei, Igarashi, Lu, and Suksompong (2022) study a more
general setting in which the goods are arranged on a general graph, and each agent must
receive a connected subgraph. Note that these are not matroid constraints.

No-conflict constraints. Li, Li, and Zhang (2021) study fair allocation with scheduling
constraints, where each item is an interval, and the feasible bundles are the sets of non-
overlapping intervals. Hummel and Hetland (2022a) study fair allocation in a more general
setting in which there is a conflict graph G, and the feasible sets are the sets of non-adjacent
vertices in G.

Downward-closed constraints. Liand Vetta (2021) study fair allocation with downward-
closed constraints, which include matroid, budget, and no-conflict constraints as special
cases. For this very general setting, they present an algorithm that approximates the max-
imin share.

Non-additive valuations. As explained in the introduction, fair allocation with con-
straints is closely related (though not equivalent) to fair allocation with non-additive val-
uations. This problem has attracted considerable attention recently. Bei, Garg, Hoefer,
and Mehlhorn (2017) and Anari, Mai, Gharan, and Vazirani (2018) study allocation of
multi-unit item-types when the valuation is additive between types but concave (i.e., has
decreasing marginal returns) between units of the same type. They give a 2-approximation
to the maximum Nash welfare (the product of utilities). Garg, Hoefer, and Mehlhorn (2018)
study budget-additive valuations, where each agent has a utility-cap and values each bun-
dle as the minimum between the sum of item values and the utility-cap. They give a
2.404-approximation to the maximum Nash welfare.

Particularly relevant to matroid constraints are the submodular valuations with binary
marginals, where adding an item to a bundle increases the bundle value by either 0 or
1. These valuations are equivalent to matroid rank functions — functions that evaluate a
bundle by the size of the largest independent set of a certain matroid contained in that
bundle. In this setting, Benabbou et al. (2021) and Babaioff et al. (2021) present allocation
mechanisms that are Pareto-efficient, EF1, EFX and strategyproof. Barman and Verma
(2021) present a polynomial-time algorithm that finds an allocation satisfying maximin-
share fairness.
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2. Model and Preliminaries
2.1 Allocations and Constraints

We consider settings where a set M of m items should be allocated among a set N of n
agents. An allocation is denoted by X = (X;);eny where X; C M is the bundle given to
agent ¢, and X; N X; = () for all i # j € N. An allocation is complete if Wieny Xi = M.
Throughout, we use [k] to denote the set {1,...,k} for every positive integer k.

We consider constrained settings where every agent 7 is associated with a matroid M; =
(M,Z;) that specifies the feasible bundles for 1.

Definition 1. A matroid is a pair M = (M, Z) where M is a set of items and Z C 2 is a
nonempty set of subsets of M (called independent sets) satisfying the following properties:
(i) Downward-closed: S C T and T € Z implies S € Z;
(ii) Augmentation: For every S, T € Z, if |S| < |T'|, then SU {g} € Z for some g € T.
A base of M is a maximal independent set in M.

An instance is said to have identical matroids if all agents have the same matroid feasi-
bility constraints, i.e., Z; = Z; for all 7,j € N.
A special case of a matroid is a partition matroid:

Definition 2 (partition matroid). A matroid M = (M, Z) is a partition matroid if there ex-
ists a partition of M into categories C = {C?,...,C*} for some ¢ < m, and a corresponding
vector of capacities k', ..., k’, such that the collection of independent sets is

T={SCM:|SNC" <k" for every h € [(]}.

An instance with partition matroids is said to have identical categories if all the agents
have the same partition into categories, i.e., {; = {; = £ and C’ih = C]}-l =Chforalli,je N
and h € [¢]. The capacities, however, may be different.

Given an allocation X, we denote by Xih the items from category C’ih given to agent ¢
in X.

A special case of a partition matroid is a uniform matroid, which is a partition matroid
with a single category.

Definition 3 (complete feasible allocation). An allocation X is said to be :
(i) feasible — if X; € Z; for every agent i;
(ii) complete — if |4, X; = M.

Let F denote the set of all complete feasible allocations. Throughout this paper we
consider only instances that admit at least one complete feasible allocation:

Assumption 1. All instances considered in this paper admit at least one complete feasible

allocation; i.e., F # ).

With constraints based on partition matroids with identical categories, the assumption
can be easily verified: it is satisfied if and only if, for every category C”, the sum of
agent capacities for this category is at least |C"|. With constraints based on a common
matroid, verifying the assumption is equivalent to the matroid partition problem, which can
be solved in polynomial time (Edmonds, 1965). In fact, Assumption 1 can be verified in
polynomial time even with different matroids: this follows from Theorem 9, which we prove
in Subsection 7.1.
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2.2 Valuations and Fairness Notions

Every agent i is associated with an additive valuation function v; : 2 — R, which assigns
a positive real value to every set S C M.?

Additivity means that there exist m values v;(1), ..., v;(m) such that v;(S) = > <5 vi(9)-
An additive valuation v; is called binary if v;(g) € {0,1} for every i € N,g € M. An allo-
cation X is Social Welfare Mazimizing (SWM) if X € argmaxx/cz > ;o n 0i(X]).

Definition 4 (envy and envy-freeness). Given an allocation X, agent ¢ envies agent j if
v;(X;) < vi(Xj). X is envy-free (EF) if no agent envies another agent.

Definition 5 (EF1). (Budish, 2011) An allocation X is envy-free up to one good (EF'1) if
for every i,j € N, there exists a subset Z C X; with |Z| < 1, such that v;(X;) > v;(X; \ Z2).

Definition 6. The set of feasible subsets of a set T' for agent i, denoted FEAS;(T), is:
FEAS;(T) :={SCT: Sel}

Definition 7 (feasible valuation). The feasible valuation of agent ¢ for a set T is denoted
0;(T) and defined as the maximum value of a subset of T' that is feasible for i:

AZ' T) .= 4 .
() = g max  vilS)

Definition 8. Given a feasible allocation X:
e Agent i F-envies agent j iff 0;(X;) < 0;(X;).
e X is F-EF (feasible-EF) if no agent F-envies another one.

e X is F-EF1 if for every i,j € N, there exists a subset Z C X; with |Z| < 1, such that
0;(X;) > 0;(X; \ Z), that is, if Z is removed from j’s bundle, then i does not F-envy

J-
Note that, if all agents have the same constraints, then all bundles in a feasible allocation

are feasible for all agents. Therefore, EF and F-EF are equivalent, and F-EF1 and EF1 are
equivalent.

For further discussion of the F-EF1 criterion and some alternative (weaker) definitions,
see Appendix A.

Another useful notation is positive feasible-envy, which is the amount by which an agent
F-envies another agent:

Definition 9. The positive feasible-envy of agent i towards j in allocation X is:
ENVY;E(’L',j) = max(O, f}l(X]) — ’LA}l(XZ))

Definition 10. For an allocation X, the envy-graph G(X) is the directed graph where the
nodes represent the agents and there is an edge from agent i to agent j iff v;(X;) < v;(X}).
The feasible-envy-graph is defined analogously based on the feasible-envy.

2. All our algorithms use a polynomial number of arithmetic operations. Thus, they run in polynomial
time in any computational model in which arithmetic operations on the numbers representing agents’
values can be done in constant time (e.g. the “unit cost” model for real numbers).
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2.3 Common Tools and Techniques

Below we review the most common methods for finding an EF1 allocation.

Envy-cycle elimination. The first method for attaining an EF1 allocation (in uncon-
strained settings, even with arbitrary monotone valuations) is due to Lipton et al. (2004).

The envy-cycle elimination algorithm works as follows. Start with the empty allocation.
Then, as long as there is an unallocated item: (i) choose an agent that is a source in the
envy-graph (not envied by another agent) and give her an arbitrary unallocated item; (ii)
reconstruct the envy-graph G corresponding to the new allocation; (iii) as long as G contains
cycles, choose an arbitrary cycle, and shift the bundles along the cycle. This increases the
total value, thus this process must end with a cycle-free graph.

Max Nash welfare. The Nash Welfare (NW) of an allocation X is the product of the
agents’ values: NW = (J[,cy vi(Xi)). An allocation is max Nash welfare (MNW) if it max-
imizes the NW among all feasible allocations. Caragiannis, Kurokawa, Moulin, Procaccia,
Shah, and Wang (2019) showed that in unconstrained settings with additive valuations,
every MNW allocation is EF1.

Round Robin (RR). RR works as follows. Given a fixed order o over the agents, as long
as there is an unallocated item, the next agent according to o chooses an item she values
most among the unallocated items (where the next of agent o[n] is agent ¢[1]). Simple
as it might be, this algorithm results in an EF1 allocation in unconstrained settings with
additive valuations (Caragiannis et al., 2019).

Per category RR + envy-cycle elimination. This algorithm (Algorithm 1) was in-
troduced by Biswas and Barman (2018) for finding an EF1 allocation when the constraints
are based on identical partition matroids (where both the categories and the capacities
are identical). It resolves the categories sequentially, resolving each one by RR followed by
envy-cycle elimination, where the order over the agents is determined by a topological order
in the obtained envy-graph.

ALGORITHM 1: Per-Category Round Robin (Biswas & Barman, 2018)
1: Initialize:
o <+ an arbitrary order over the agents.
For all i € N, set X; <+ 0.
2: for every category h do
Run Round Robin with C",¢.
Let Xih be the resulting allocation for agent i.
For all i € N, let X; (—XiUXih.
Construct the envy-graph for the current allocation.
Remove cycles from the graph, switching bundles along the cycles.
8:  Set o to be a topological order of the graph.
9: end for
10: return the allocation X.

576



FAIR DI1VISION UNDER HETEROGENEOUS MATROID CONSTRAINTS

2.4 Pareto-efficiency

Definition 11. A (feasible) allocation X is Pareto-efficient if there is no other feasible
allocation X’ such that all agents weakly prefer X’ over X and at least one agent strictly
prefers X'.

We observe that, with additive identical valuations, every complete feasible allocation
is Pareto-efficient.

Observation 1. For any (possibly constrained) setting with identical additive valuations,
every complete feasible allocation is Pareto-efficient.

Proof. Let v denote the common valuation of all agents. Let X be a complete feasible
allocation. Feasibility implies that for every agent i € N: 0;(X;) = v(X;). Therefore,
Y ien 0i(Xs) = > en v(X;). By completeness and additivity, the latter sum equals v(M),
which is a constant independent of X. So the sum of feasible values is the same in all
complete feasible allocations. Therefore, if any other allocation gives a higher value to some
agent, it must give a lower value to some other agent. O

3. Partition Matroids with At Most Two Categories

In this section we initially assume that the agents’ constraints are based on partition ma-
troids with a single category (uniform matroids). This means that the constraint is only on
the number of items given to each agent. We later extend the result to partition matroids
with two categories.

3.1 Uniform Matroids

As a warm-up, we present a simple algorithm for a setting with a single category. We call
it Capped Round Robin (CRR). CRR is a slight modification of Round Robin, where if an
agent reached her capacity — she is skipped over (Algorithm 2).

ALGORITHM 2: Capped Round Robin

Input: Category C” with capacities k! for every i € N, and an order o over N.
1: Initialize: L < C" t <« 0,Vi € N : X! + .
2: while L # () do
3: 14+ olt].

4:  if | X} < kP then

5: g = argmax, ¢ vi(g)-

6: XM« XPu{g}. // Agent i gets her best unallocated item in C"
7: L+ L\ {g}.

8  end if

9: t<t+1 mod n.
10: end while
11: return X"

CRR finds an F-EF1 allocation whenever the constraints of all agents are uniform ma-
troids, i.e., partition matroids where all items belong to a single category (but agents may
have heterogeneous capacities and heterogeneous valuations).
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Theorem 2. With uniform-matroid constraints, CRR finds an F-EF1 allocation using a
polynomial number of arithmetic operations. Furthermore, if X is the outcome, for every
i,j such that i precedes j in o, vi(X;) = 0;(X;) > 0;(X;).

The proof is similar to that of standard Round Robin in unconstrained settings. We
include it here for completeness.

Proof. Let i,j € N be two agents such that i precedes j in o.

First, we prove that i does not envy j. Let Y be any feasible subset of X; maximizing
v;, so that 0;(X;) = v;(Yj).

Since i chooses first among i, j, | X;| > |Yj|. If we order X; and Y; according to the order
in which the items were taken, every item in X; was chosen before (and is therefore worth
more to agent i than) the item in Y; picked in the same round (if such one exist, as | X;| >
|Y;]). That is because between the two of them, i chose first. So v;(X;) > v;(Y;) = 0;(X}).

Now it remains to show that X satisfies the F-EF1 condition for j. Let g be the first
item chosen by agent i. Notice that if we remove g from X;, it is equivalent to j being the
one choosing first among ¢, j (when the item set does not include g). Therefore, we can use
the exact same argument to claim that v;(X;) > 0;(X; \ {g}).

CRR can be implemented by sorting the items in C*, for each agent i, by descending
order of v;. This requires O(n|C"|log (|C"|)) arithmetic operations. Then, the main loop
requires O(|C"|) arithmetic operations. O

3.2 Two Categories

While CRR may not find an F-EF1 allocation for more than one category, we can extend it
to two categories by running CRR with reverse order on the second category; see Algorithm
3.

Theorem 3. When all agents have partition-matroid constraints with at most two cate-
gories, the same categories but possibly different capacities, an F-EF1 allocation always
exists and can be found using a polynomial number of arithmetic operations.

ALGORITHM 3: Back-and-Forth CRR

0 < an arbitrary order over the agents.

Run Capped Round Robin with C1, 0. Let X} be the outcome for each agent i € N.
o' + reverse(o).

Run Capped Round Robin with C?,0’. Let X? be the outcome for each agent i € N.
return X} U X? for alli € N.

Proof. Algorithm Back-and-forth CRR (Algorithm 3) runs CRR in an arbitrary order for
the first category, then uses the reverse order for CRR in the second category. After the
first category, by Theorem 2, the allocation is F-EF1 and no agent envies another agent
that appears in ¢ after her. Consider two arbitrary agents i, j at the end of the algorithm.
If agent i F-envied agent j (up to 1 good) after the first category, she appears before j in
o’ and thus will not gain any more envy in the second category. If 7 didn’t F-envy j after
the first category, she can only gain envy up to one good in the second category. That is,
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in one of the categories she might envy up to one good, in the other she will not envy at
all. We conclude that the resulting allocation is F-EF1.

Since CRR. uses a polynomial number of arithmetic operations, the same is true for
Algorithm 3. O

With three or more categories, when agents have additive heterogeneous valuations and
heterogeneous constraints, it is open whether an EF1 allocation exist.

4. Partition Matroids with Heterogeneous Capacities, Identical
Valuations

We now consider an arbitrary number of categories, allow agents to have heterogeneous
capacities, but assume that all agents have the same valuations; this is, in a sense, the dual
setting of Biswas and Barman (2018) who consider identical capacities and heterogeneous
valuations. Using CRR as a subroutine, we show that a similar algorithm to the one used
by Biswas and Barman (2018) finds an F-EF1 allocation in this setting; this follows from
the fact that no cycles can be formed in the envy-graph. Using Algorithm 4 we prove:

Theorem 4. For every instance with identical additive valuations and partition matroids
with identical categories (but possibly different capacities), Algorithm 4 finds an F-EF1
allocation using a polynomial number of arithmetic operations.

Similarly to Biswas and Barman (2018), our Algorithm 4 iterates over the categories
running a sub-routine in each. While they run Round Robin, we run CRR. The order for
the sub-routine is determined by a topological sort of the envy-graph. Biswas and Barman
(2018) have an extra step of de-cycling the graph, which is not needed in our case due to
the following lemma.

ALGORITHM 4: Per-Category Capped Round Robin
Input: M,C, k! for every i € N, h € [(]
Output: an F-EF1 allocation X.
. Initialize: o < an arbitrary order over the agents; Vi € N X; < 0.
: for all C" € C do
X" + Capped Round Robin on C" with order o.
Set o to be a topological order of the feasible-envy-graph (which is acyclic by Lemma 1).
end for
return the allocation X.

NSO

Lemma 1. Consider an instance with identical additive valuations and partition matroids
with identical categories (but possibly different capacities). Let X be any feasible allocation.
Then the feasible-envy-graph of X is acyclic.

Proof. We first prove that the envy-graph of X is acyclic. Suppose by contradiction that
there is an envy-cycle. W.l.o.g., suppose the cycle contains some p > 2 agents, with envy
relations 1 — 2 — -+ — p — 1. Then, v(X;) < v(X2) < ---v(Xp) < v(X;), which is a
contradiction.
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Note that we cannot use the same argument directly for feasible-envy, since the feasible-
valuation functions v; may differ due to the different capacities. However, we can prove that
the feasible-envy-graph is a subgraph of the envy-graph. Indeed, if some agent ¢ F-envies
some agent j, then 0;(X;) < 0;(X;). But 9;(X;) = v;(X;) since the allocation is feasible,
and 9;(X;) < v;(X;) by definition of feasible-valuation. Therefore, v;(X;) < v;(X}), so i
envies j.

Since the envy-graph has no cycles, every subgraph of it must have no cycles. O

Proof of Theorem 4. We show by induction that, after the assignment of all goods in each
category, the allocation is F-EF1.

Base: After the first category, the allocation is F-EF1 by Theorem 2.

Step: Assume the allocation is F-EF1 after ¢ categories. Before running category ¢ + 1
we reorder the agents topologically according to the feasible-envy-graph, and use this order
as o in Algorithm 2 (CRR). This is possible by Lemma 1, which shows that the feasible-
envy-graph is acyclic. For every i,j such that ¢ precedes j in o, j does not F-envy ¢. By
Theorem 2, during category t 4 1, j can become envious of 4, but only up to one good, and
i’s envy cannot increase. This implies that if the allocation is F-EF1 in the end of category
t, it remains F-EF1 after category ¢ 4 1.

Since CRR. uses a polynomial number of arithmetic operations, the same is true for
Algorithm 4. O

The following theorem shows that, for identical valuations and possibly different capac-
ities, the Maximum Nash Welfare allocation is F-EF1.

Theorem 5. Suppose the constraints are based on partition matroids with identical cate-
gories but possibly different capacities. When agents have identical valuations, any feasible
allocation that mazimizes Nash Welfare is F-EF1.

Proof. Let X be an allocation that maximizes Nash Welfare (MNW), and suppose there
exist agents ¢,j such that i F-envies j. This means that, for at least one category h,
(XP) < f)l(X]h) Since the allocation is feasible, this implies v(X[) < @Z(X]h) This
implies 0;(X Jh) > 0, which implies k? > 0 and |X Jh | > 0. Without loss of generality, we
can assume that |X"| = kP; otherwise, we can add to category h some k' — |X/'| dummy
elements with value 0 to all agents and give them to agent ¢ without affecting the valuations.

Therefore, | X| > 0 too, so the following items exist:

b € argmin v(t); g € argmaxv(t).
tex] texy
We have
kP v(g) > @Z(th) by definition of g,
> @Z(th) since 7 F-envies j in category C",
= o(X) since X is feasible,
>kl o(b) by definition of b,

so v(g) —v(b) > 0.
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Let X’ be the allocation obtained from X by swapping goods b and g between i and
j’s allocations. X' is feasible since b and g are in the same category. Since X is MNW, it
follows that

(v(Xi) +v(g) = (b)) - (v(X;) = v(g) +v(b)) < v(Xi) - v(Xj).

Let z = v(g) — v(b) > 0. We get

v(X)v(X;) —v(Xi)z +o(Xj)z — 22 < v(Xi)v(X;).
Simplifying the above expression and using the fact that z > 0, we get

v(X;) — 2z < v(Xy).
Since the valuation is additive, and v(b) > 0, we get
v(Xi) 2 v(Xj) — 2 = v(X;) —v(g) +v(b) = v(X;) —v(g) = v(X; \ {g})-
By the fact that 0;(S) < v(S) for every set S, we get
0i(X5\ {g}) < v(X;\ {g}) <v(Xy) = 0:i(Xi).

This implies that X is F-EF1, completing the proof. O

The fact that the constraints are based on partition matroids is used in the proof step
regarding the exchange of items b and g. Possibly, the result can be extended to agents
with different matroid constraints (M,Z;), as long as the different matroids satisfy some
“pairwise basis exchange” property. So far, we could not formally define this property.

5. Partition Matroids, Binary Valuations

In this section we assume that all agents have binary additive valuations. For binary
valuations v;(g) € {0, 1} for all i, g. For every agent i we refer to the set of items M; = {g €
M :v;(g) = 1} as agent i’s desired set.

5.1 Algorithm for F-EF1 Allocation

We present an efficient algorithm that finds an F-EF1 allocation for n agents with hetero-
geneous binary valuations, and partition matroids with heterogeneous capacity constraints.
Two key tools we use are the agent-item graph and the priority matching, defined next.

Definition 12 (Agent-item graph). Given a category h and a partial allocation X, the
agent-item graph is a bipartite graph G", where one side consists of the agents with remain-
ing capacity (i.e., agents such that |X"| < k), and one side consists of the unallocated
items of C". An edge (i, g) exists in G" iff ¢ is a desired item of 4, that is, v;(g) = 1.

Definition 13 (Priority matching). Given a graph G = (V, E'), a matching in G is a subset
of edges 1 C FE such that each vertex v € V is adjacent to at most one edge in p. Given a
linear order on the vertices, o[1],...,o[n], every matching is associated with a binary vector
of size n, where element i equals 1 whenever vertex o[i] is matched. A priority matching of
o is a matching associated with the maximum such vector in the lexicographic order.
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Note that every ordering o over the vertices may yield a different priority-matching.
Priority matchings were introduced by Roth, Sénmez, and Unver (2005) in the context
of kidney exchange, where they prove that every priority matching is also a mazimum-
cardinality matching; that is, it maximizes the total number of saturated vertices in V.
Okumura (2014) extended this result to priority classes of arbitrary sizes, and showed
a polynomial time algorithm for finding a priority matching. Simpler algorithms were
presented by Turner (2015b, 2015a).

Theorem 6. Suppose the constraints are based on partition matroids with identical cat-
egories but possibly different capacities. When agents have binary valuations, an F-EF1
allocation exists and can be computed in polynomial time by the Iterated Priority Matching
Algorithm (Algorithm 5).

ALGORITHM 5: Tterated Priority Matching
1: Initialize: Vi € N : X; « 0.
2: for each category h do
33 Vie N:X!«0.

// Matching phase:

4: T .= max;en ki’

5. fort=1,...,7" do

6: Construct the agent-item graph G? (see Definition 12).

7 Construct the feasible-envy-graph corresponding to X.

8: o < an ordering on the vertices of GI' where:
(a) All agents are ordered before all items;
(b) The ordering among the agents is a topological order on the feasible-envy-graph;
(¢) The ordering among the items is arbitrary.

9: Find a priority matching in G? according to o (see Definition 13).

10: For every agent i who is matched to an item g;: X! < X" U {g;}.

11: end for

// Leftover phase:
12:  Allocate the unmatched items of C" arbitrarily to agents with remaining capacity.

132 Vie N:X;«+ X;UX!
14: end for
15: return the allocation X.

The Iterated Priority Matching algorithm (Algorithm 5) works category-by-category.
For each category h, the items of C" are allocated in two phases, namely the matching
phase and the leftover phase. The matching phase proceeds in several iterations, where in
each iteration, every agent receives at most one item. The number of iterations is at most
the maximum capacity of an agent in C", denoted by T" := max;cy k:f

Given the current allocation, let o be a topological order over the agents in the feasible-
envy-graph (we shall soon show that the feasible-envy-graph is cycle free, so a topological
order exists). In each iteration ¢ of the matching phase, we construct the agent-item graph
GP. We extend o to an ordering over all the vertices of GJ by ordering all the items, in
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an arbitrary order, below all the agents. We then compute a priority-matching in G% with
respect to o, and add the obtained matches to the agent allocations. We then update the
feasible-envy-graph and proceed to the next iteration, where the next set of items in C" is
allocated.

Finally, we allocate the leftover items arbitrarily among agents, respecting feasibility
constraints. This is possible since a feasible allocation exists by assumption. We first prove
that these leftover items are worth 0 for all agents with remaining capacity.

Lemma 2. For every category h, all items allocated at the leftover phase are worth O for
all agents with remaining capacity for C*.

Proof. For every category h and every agent 7, in each iteration of the matching phase in
which agent i has remaining capacity for C*, at least one item valuable for i is allocated
(either to i, or to some other agent, or both); otherwise, the matching could be augmented
by assigning one such item to ¢, contradicting the maximality of the priority matching.

Therefore, after at most k:lh iterations of the matching phase, there are only two options:
either agent ¢ has no remaining capacity (that is, i received exactly k:zh items worth 1 for
him), or agent i values all remaining items of C” at 0.

Since T" := max;c kP, after at most T" iterations of the matching phase, the same is
true for all agents, that is, the remaining items are worthless for all agents with remaining
capacity. ]

To prove the correctness of the algorithm, it suffices to prove that every feasible-envy-
graph constructed in the process is cycle-free, and that the feasible-envy between any two
agents is at most 1. We prove both conditions simultaneously in the following lemma.

Lemma 3. In every iteration of Algorithm 5:
(a) The feasible-envy-graph has no cycles;
(b) For everyi,j € N, ENvy% (i,j) < 1.

Proof. The proof is by induction on the categories and iterations. Both claims clearly hold
from the outset (i.e., under the empty allocation). In the analysis below, we refer to states
before (h,t) and after (h,t) to denote the states before and after iteration ¢ of category h,
respectively.

Proof of property (a). We assume that properties (a) and (b) both hold before (h,1)
(i.e., before starting to allocate items in category h). We prove that property (a) holds after
(h,t) for every t. Suppose by contradiction that after (h,t) thereisacyclei; — -+ — i, =43
in the feasible-envy-graph. By the induction assumption (a), the cycle did not exist before
category h, so at least one edge was created during the first ¢ iterations in category h.
Suppose w.l.o.g. that it is the edge i1 — 5.

Let @1 be the set of items desired by i; that are allocated to i; up to (and including)
iteration ¢ of category h, and let ¢ = |@Q1]. By Lemma 2, agent i1 got these ¢ items during the
matching phase of h. Moreover, he must have gotten these ¢ items in the first ¢ iterations
of the matching phase (otherwise, there exists an iteration < ¢ in which ¢; did not get an
item, but a desired item remained unallocated, contradicting priority matching).

Let Q2 be the set of items desired by 4; that are allocated to is up to iteration ¢ of
category h. The fact that i) started to F-envy iy during category h implies that |Qa] > ¢+1
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and kﬁ > q+ 1. By Lemma 2, agent i2 got all these ¢ + 1 items during the matching phase
of h. Moreover, he must have gotten these items in the first ¢+ 1 iterations of the matching
phase (otherwise, one of these items could have been allocated to i; in iteration ¢ + 1,
contradicting priority matching). Therefore, iy received at least ¢ + 1 items within the
matching phase, implying that is’s value increased by at least ¢ + 1 up to iteration ¢ of
category h.

Let (@3 be the set of items desired by 49 that are allocated to i3 up to iteration ¢ of
category h. By assumption of the envy-cycle, iy F-envies i3 after (h,t). By the induction
assumption (b), ENVYX (i2,43) < 1 before (h,1). Since is’s value increased by at least g+ 1
up to iteration ¢ of category h, it must hold that |@Q3] > ¢+ 1. We now claim that before
(h,q + 1), at most one item of Q)3 was available, and i3 got it in this iteration. Otherwise,
one could allocate one of those items to io, and allocate the item that i5 received in iteration
g + 1 (that is desired by 1) to i, increasing the priority matching.

We conclude that i3 got an item at each one of the first ¢+ 1 iterations of category h, as
|Q3| > ¢+ 1. Since all of these iterations are within the matching phase, all of these items
are desired by i3. Therefore, i3’s value increases by at least ¢+ 1. Repeating this argument,
we conclude that every agent along the cycle received at least ¢ + 1 desired items during
the first ¢ steps of h, including agent i, = i1; but this is in contradiction to the fact that i;
received only ¢ = |@1] items.

Proof of property (b). We assume that property (b) holds for every iteration before
(h,t) and prove that it holds after (h,t).

Let i1,i2 be arbitrary agents. By the induction assumption, before (h,1),..., (h,t) we
had ENVYX (i1,42) < 1. We consider several cases.

Case 1: Before (h,t), we had ENVYY (i1,42) = 0. Since at most one item is allocated to
io at iteration ¢, we must have ENVYY (i1,42) < 1 after (h,t).

Case 2: Before (h,t), the capacity of agent i; was exhausted, so we have v, (X]') =
k' > #;,(X!). But before (h,1) we had ENVYY (i1,42) < 1, and the envy cannot increase
after adding kzhl to v, (X, ) and at most kzhl to v;, (Xi,)-

Case 3: Agent i1 does not desire any item remaining before (h,t). Then clearly the
envy of i; cannot change during (h,t).

The remaining case is that, before (h,t) we had ENVY;( (i1,42) = 1, the capacity of i1

was not exhausted, and 71 desires at least one item. Then, i; precedes i5 in the topological
order ¢ in iteration ¢, so the priority-matching on G} prefers to match 41, than to match iy
and leave i; unallocated. Therefore, the envy of i; at is does not increase during (h,t).

Finally, we claim that properties (a) and (b) are not affected by the leftover phase.
By Lemma 2, for every agent i and category h, there are two options: either agent ¢ has
received exactly kf desirable items of category h, or agent ¢ values all leftover items at 0.
In the former case, the F-envy of ¢ at any other agent cannot increase during category h at
all. In the latter case, the F-envy of ¢ cannot increase during the leftover phase of category
h. In any case, the leftover phase cannot add new envy edges or increase the envy levels.
Therefore, properties (a) and (b) still hold after the leftover phase. O
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5.2 Pareto-efficiency

We show that if capacities are binary (that is, k? € {0,1} for all 4,h), then Algorithm 5
returns a Pareto-efficient allocation, but this is not the case under arbitrary (non-binary)
capacities.

Observation 7. In settings with partition constraints with heterogeneous binary capacities
and heterogeneous binary valuations, Algorithm 5 returns a Pareto-efficient allocation.

Proof. Under binary capacities, the algorithm runs a single priority matching in each cat-
egory. As this matching is of maximum cardinality, it maximizes the social welfare within
this category. From additivity, the allocation that maximizes social welfare within every
category maximizes social welfare over all categories. Any allocation maximizing the social
welfare is Pareto-efficient. O

The following example shows that when capacities may be larger than 1, even when
there is a single category and two agents with the same capacity, the allocation returned
by Algorithm 5 may not be Pareto-efficient.

Example 1. Consider the setting depicted in the following table. The agents are Alice and
Bob, with valuations v4 and vg respectively. The allocation is represented by asterisks.

Item || 1 | 11 Y2 21
VA 1*]1*]1 0
vB 1 0 0*|1*

There are two agents sharing an identical uniform matroid with capacity 2, and four items.
We claim that the allocation depicted in the table can be the outcome of Algorithm 5, and
is not Pareto-efficient. Indeed, in the first iteration the priority matching may assign x;
to Alice and z; to Bob. Then, Bob does not want any remaining item, so in the second
iteration Alice gets y;. Finally, in the leftover phase Bob gets y2. In the obtained allocation,
Alice has value 2 and Bob has value 1. This allocation is Pareto-dominated by the allocation
giving y1, y2 to Alice and x1, 21 to Bob: Alice is indifferent and Bob is strictly better off. [

It remains open whether the setting with binary valuations and general heterogeneous
capacities always admits an allocation that is both F-EF1 and Pareto-efficient.

6. Partition Matroids, Two Agents

In this section we present an algorithm for two agents with heterogeneous capacities. To
present the algorithm we introduce some notation.

e Given an allocation X, the surplus of agent i in category h is

SURP}(X) = 0;(X]") — 0;(X]").

That is, the difference between i’s value for her own bundle and her value for j’s
bundle.
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e Given agents 1,2, valuation functions v,v’, an integer a € {1,2} and a category h,
R(v,v';a)" denotes the allocation obtained by Capped Round Robin (Algorithm 2 in
Section 3) for category h, under valuations v, = v,vy = v’, and where agent a plays
first. When the category is clear from the context, we omit the superscript h.

Theorem 8. In every setting with two agents and partition matroid constraints with iden-
tical categories (but possibly different capacities), an F-EF1 allocation exists and can be
computed by Algorithm “Round Robin Squared” (RR2, Algorithm 6) using a polynomial
number of arithmetic operations.

In RR?, there are two layers of Round Robin (RR), one layer for choosing the next
category, and one layer for choosing items within a category. For every agent ¢, the categories
are ordered by descending order of the surplus SURP?(R(v1, ve;4)), that is, the surplus that
agent ¢ can gain over the other agent by playing first in category h. Denote this order m;.

In the first iteration, agent 1 chooses the first category in m;. Within this category, the
items are allocated according to Capped Round Robin (CRR) (Algorithm 2), with agent
1 choosing first. In the second iteration, agent 2 chooses the first category in my that has
not been chosen yet. Within this category, the items are allocated according to CRR, with
agent 2 choosing first. The algorithm proceeds in this way, where in every iteration, the
agent who chooses the next category flips; that agent chooses the highest category in her
surplus-order that has not been chosen yet, and within that category, agents are allocated
according to CRR with that agent choosing first. This proceeds until all categories are
allocated.

ALGORITHM 6: RR-Squared (RR?)

Input: A set of items M, categories C!, ..., C*, capacities kI for every i € {1,2},h € [(];
a € {1,2} the first agent to choose.
1: Initialize for all i € {1,2}: X; < 0); m; <« Categories listed by descending order of
SURP! (R(vy,v2;1)).
while there are unallocated categories do
h <+ the first category in 7, not yet allocated.
Run CRR on category h. Let X" < R(vy,v2;a)".
For all i € {1,2}, let X; + X; U X[
Switch a to be the other agent.
end while
return the allocation X.

The key lemma in our proof asserts that the surplus of an agent ¢ when playing first
within a category h is at least as large as minus the surplus of the same agent when playing
second in the same category. Formally:

Lemma 4. For every category h:
(a) SURPM(R(v1,v;1)") > —SURPH(R(v1, va;2)");
(b) SURPE(R(vy,v9;2)") > —SURPR(R(v1,v2;1)).
The proof is based on Lemmas 5 through 7, which consider a setting with two agents

playing CRR (Algorithm 2) on a single category.
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We introduce the following notation for the proofs. Given a valuation function v and
an item j, we denote:

o #v>jl=Hi"e M:u(j)

>
o #v>j]:=|{j € M:v(j) > v(j)} = the number of items at least as valuable as j
(including j itself).

Observation 1. If #[v > j] > #[v > k] then v(j) < v(k).

v(7)}| = the number of items more valuable than j;

Proof. By contradiction: if v(j) > v(k) then the set of items more valuable than k includes
j and all the items that are at least as valuable as j, and therefore #[v > k| > #[v > j|. O

Lemma 5. The worst case for each agent i with true valuation v; is that the other agent
plays according to the same valuation v;. Formally, for every a € {1,2} and valuation v':

(a) ﬁg(R(’Ug,’Ug; a)g) S @Q(R(U/,UQ; a)g)
(b) 01(R(vi,v15a)1) < 01 (R(v1,v'5a)1)

Proof. The two statements are obviously analogous; below we prove claim (a). Denote:
> .

o 7 := R(v2,v2;a)y ordered by descending ve, such that va(vy1) > va(72)

e 7 :=R(vV',v2;a)2 ordered by descending vy, such that va(7]) > va(v4) > ---.

Ties between items with same vy are broken arbitrarily but consistently (e.g. by item name).
Note that |y| = |7/|, as agent 2 gets the same number of items in both plays (the number
of items given to agent 2 depends only on the agents’ capacities and not on their valuations).
We have to prove v2(y) < 02(7"). We prove a stronger claim: va(y;) < va(7;) for all ¢ < |v].
For every index t < ||, denote by z; the number of items held by agent 1 in round ¢ of
agent 2, that is:

min (kf,t — 1)  if agent 2 plays first (a = 2)
2t 1=
‘ min (k7' 1) if agent 1 plays first (a = 1)

When both agents play according to ve, after agent 2 picks 7, agents 1 and 2 together
hold the z; 4+ ¢ most-valuable (by v2) items; hence, #[va > | > 2z + t.

When agent 1 plays according to v’, agent 2 still plays by vy and thus takes 7, at round
t (assuming consistent tie-breaking), while holding ¢ — 1 items that are more valuable (or
as valuable as) ;. At that point, agent 1 holds at most z; items more valuable than ~;. All
in all, #[va > ] <z +t—1.

Combining the two inequalities gives #[vy > ] > #[va > 7], which by Observation 1
gives va (7)) > va(y4) as claimed. O

The next lemma considers the value each agent attributes to the other agent’s bundle:

Lemma 6. FEvery agent i with true valuation v; weakly prefers the bundle the other agent
gets when playing according to v;, over the bundle the other agent gets when playing accord-
ing to any other valuation. Formally, for every a € {1,2} and every valuation v':

(a) 01(R(vi,vi5a)2) > 01(R(v1,v;a)2)
(b) @Q(R(’UQ,UQ; a)l) Z ﬁg(R('U/,’UQ; a)l)
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Proof. The two statements are analogous; we prove claim (b). As in the proof of Lemma
5, we denote v := R(va, va;a); ordered by descending vo and 7/ := R(v',v9;a); ordered by
descending vy, and prove va(7y;) > va(7y;) for all ¢ < |y|. Now we denote by z; the number
of items held by agent 2 in round ¢ of agent 1:

min (kB ¢t —1)  if agent 1 plays first (a = 1)
2zt 1=
! min (k% t) if agent 2 plays first (a = 2)

When both agents play according to v, before agent 1 picks =, agents 1 and 2 together
hold the z; + ¢t — 1 most-valuable (by ve) items; hence, #[vy > ] < 2z +t — 1.

When agent 1 plays according to v’, agent 2 still plays by vo and thus takes at least z
of the z; +t — 1 most-valuable items. By definition of the order 7/, agent 1 holds at least ¢
items that are at least as valuable as 7. All in all, #[vy > 7] > 2z + ¢.

Combining the two inequalities gives #[ve > ~;] > #[va > ], which by Observation 1
gives vy () > v2(y;) as claimed. O

The next lemma considers a situation when both agents play by the same valuation:

Lemma 7. Suppose both agents play according to the same valuation.
(a) The value of each agent for her own bundle when she plays first is at least her value
for the other agent’s bundle when the other agent plays first:

@1(7?,(’[)1,’[)1; 1)1) Z @1(7?,(111,111; 2)2)
02(R(v2,v2;2)2) > 92(R(va,v2;1)1)

(b) Similarly, the value of each agent for her own bundle when the other agent plays
first is at least her value for the other agent’s bundle when she plays first:

@1(7?,(’01,1)1; 2)1) Z @1(7?,(1}1,1}1; 1)2)
U2(R(v2,v2;1)2) > 02(R(v2,v252)1)

Proof. We prove both claims for agent 1 only; the proof for agent 2 is analogous.

(a) When both agents play using the same valuation, the only thing that differentiates
agent 1’s bundle when 1 chooses first from agent 2’s bundle when 2 chooses first is their
capacities.

If k{L < kg, then R(v1,v1;1)1 € R(v1,v1;2)2, and R(vy,v1;1); contains the k{L highest-
valued items in R(v1,v1;2)2. Hence, R(v1,v1; 1)1 maximizes vy within FEAS; (R (v1,v1;2)2),
so 01(R(v1,v1;1)1) = 01(R(v1,v1;2)2). Therefore, (a) holds with equality.

If kg < k?, then R(v1,v1;2)2 € R(vi,v1;1)1, and both these bundles are feasible for
agent 1. Therefore, 01(R(vi,v1;1)1) > 01(R(v1,v1;2)2), establishing (a).

(b) is proved using similar arguments.

If kP < k. then R(vi,v1;2)1 € R(v1,v1;1)a, and R(v1,v1;2)1 contains the k% highest-
valued items in R(v1,v1;1)s. Hence, R(v1,v1;2); maximizes v; within FEAS; (R (vi,v1;1)2),
s0 01(R(v1,v1;2)1) = 01(R(v1,v1;1)2). Therefore, (b) holds with equality.

If kb < kP, then R(vq,v1;1)2 € R(v1,v1;2)1, and both bundles are feasible for agent 1.
Therefore, v1(R(vi,v1;2)1) > 01(R(vi,v1;1)2), establishing (b). O
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With these lemmas in hand, we are ready to prove Lemma 4.
Proof of Lemma 4. We provide the proof for the first statement:
SURPM(R(v1,v2;1)") > —SURP! (R (vy, va; 2)1).

The proof of the second statement is analogous.

SURPIMR(v1,v2;1))

= 01(R(v1,v2;1)1) — 01(R(v1,v2;1)2)

> 01(R(vi,v1;1)1) — 01(R(v1, v2; 1)2) Lemma 5(b) with v = v9 and a = 1.

> 01(R(vi,v1;1)1) — 01(R(v1,v1;1)2) Lemma 6(a) with v’ = vy and a = 1.

> 01(R(v1,v1;2)2) — 01(R(v1,v1;1)2) Lemma 7(a) for agent 1.

> 01(R(v1,v2;2)2) — 01(R(v1,v1;1)2) Lemma 6(a) with v' = vg and a = 2.

> 01(R(v1,v2;2)2) — 01(R(v1,v1;2)1) Lemma 7(b) for agent 1.

> 01(R(v1,v2;2)2) — 01(R(v1,v2;2)1) Lemma 5(b) with v' = vy and a = 2.

= —SURP(R(v1,v9;2)). O

Finally, we use Lemma 4 to prove Theorem 8.

Proof of Theorem 8. Without loss of generality, suppose agent 1 is the first to choose a
category. Let C',...,C* be the categories in the order they are chosen. If ¢ is odd, we
add a dummy empty category to make it even. We show first that agent 1 does not F-envy
agent 2. We have

v (X)) - i (Xo) = D u(XP) - Y 0i(Xy) (by additivity)
hed{l,...,0} he{l,...,0}

= > (n(XP) -0 (X3))
he{l,....¢}

= Z SURP?(X) (by definition of surplus)
he{1,....¢}

= Z SURP}(R(v1,v2;1)) + Z SURP}(R(v1,v2;2))  (by the Round Robin order)
h is odd h is even

> > surRPH(R(vi,vz;1))+ Y —SURP}(R(v1,v;1)) (1)
h is odd h is even

= ) (SUrRPY"H(R(v1,v2;1)) — SURP (R(v1, 03 1))). (2)
te{l,.... £}

Equation (1) is attained by applying Lemma 4 to the rightmost summand: SURP? (R (v1,v9; 1))
> —SURP}(R(v1,v2;2)") is equivalent to SURP}(R(v1,v2;2)") > —SURP!(R(v1,ve;1)").
Since agent 1 chooses the odd categories, and does so based on highest surplus, it im-

plies that for every t, SURP? ! (R(v1,v2;1)) > SURPT(R(v1,v9;1)), as category 2t was
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available when agent 1 chose category 2t — 1. Therefore, every summand in the sum of (2)
is non-negative. Thus, the whole sum is non-negative, implying that v1(X1) > 01(X32), as
claimed.

We next show that agent 2 does not F-envy agent 1 beyond F-EF1. As a thought
experiment, consider the same setting with the first chosen category removed. Following
the same reasoning as above, in this setting agent 2 does not F-envy agent 1. But within
the first category, agent 2 can only F-envy agent 1 up to one item. That is, there exists
one item in the first category such that when it is removed, it eliminates the feasible-envy
of the second agent within that category, and thus eliminates her feasible-envy altogether.
We conclude that the obtained allocation is F-EF1.

Algorithm 6 executes CRR a polynomial number of times, and each execution uses a
polynomial number of arithmetic operations by Theorem 2. Therefore, Algorithm 6 too
requires a polynomial number of arithmetic operations. O

The existence of EF1 allocations for three or more agents with heterogeneous capacities
remains open. For two agents, the notion of surplus allows us to treat each category as
a single item, whose value for agent i is SURP?(R(v1,v9;4)"). The challenge in extending
our approach to n > 3 agents is that, for each category, there are n! possible Round Robin
orders, so it is not clear how to extend the notion of “surplus®.

7. Base-Orderable Matroids, At Most Three Agents

In this section we consider constraints that are represented by a wide class of matroids,
termed base-orderable (BO) matroids.® Recall that the bases of a matroid are its inclusion-
maximal independent sets. In the definitions below, we use the shorthands S+z := SU{z}
and S —z := S\ {z}, for any set S and item x.

Definition 14. Given a matroid (M,Z) and independent sets I,J € Z, a pair of items
x €1 and y € J is called a feasible swap if both I —x +y and J — y + x are in Z.

Definition 15. (Brualdi & Scrimger, 1968). A matroid M = (M,Z) is base-orderable
(BO) if for every two bases I, J € Z, there exists a feasible exchange bijection, defined as a
bijection p : I — J such that the pair (z, u(z)) is a feasible swap for all z € I.

This class contains many interesting matroids, including partition matroids, laminar
matroids (a natural generalization of partition matroids where the categories may be par-
titioned into sub-categories),* transversal matroids,® and more.

Algorithms on general matroids usually get access to an input matroid M through
an oracle. A common type of oracle is an independence oracle — a Boolean function that

3. The class of base-orderable matroids was first introduced by Brualdi and Scrimger (1968), Brualdi (1969),
but the term base-orderable appeared only later (Brualdi, 1971).

4. Formally, a laminar matroid is defined using ¢ possibly-overlapping sets C1,Ca2,...,C¢ C M such that
Uszl Cr = M. Additionally, for every pair h,h’ € {1,...,£}, only one of the following holds: (i)
Cr C Cy or, (ii) C, C Cp, or, (ili)) C, N Chr = @. Each Cp has a capacity kn. A set I C M is
independent if and only if |[I N Cy| < ki, for each h € {1,...,£}.

5. Given a bipartite graph G = (L + R, E), the transversal matroid is a matroid on L. Its independent sets
are all subsets of L which are sets of endpoints of matchings in G. Formally, Z = {A C L : there exists
an injective function f : A — R such that, for all a € A, it holds that (a, f(a)) € E}.

590



FAIR DI1VISION UNDER HETEROGENEOUS MATROID CONSTRAINTS

decides whether a given set of elements is an independent set of M (Rado, 1942). Using this
oracle, it is possible to construct a circuit-finding oracle, that returns, for every set that is
not independent in M, a circuit — a minimal dependent subset (Robinson & Welsh, 1980).

Lemma 8. Let M be a base-orderable matroid. For every two bases I,J of M, it is possible
to find a feasible-exchange bijection using a polynomial number of arithmetic operations and
calls to an independence oracle of M.

Proof. Construct a bipartite graph G with the elements of I on one side and the elements of
J on the other side. For an element in both I and J, there are two different vertices — one
on each side. Add an edge between elements z € I and y € J whenever I — x + y is a basis.
This can be checked using the independence oracle, and therefore G can be constructed in
polynomial time.

Find a perfect matching in G; such a matching exists since M is base-orderable. Return
a feasible-exchange bijection p that maps each element in I to the element matched to it
in J.5 O

When different agents have different matroids, even when these are all partition ma-
troids, an F-EF1 allocation may not exist (see Example 4 in Section 8.2 below). Therefore,
we restrict attention to settings with a common matroid M. With identical constraints,
F-EF1 and EF1 are equivalent, so in this section we only mention EF1. Before presenting
our algorithm, we present two tools that are useful for any matroid — BO or not: find-
ing an allocation maximizing the social welfare with matroid constraints (Section 7.1) and
extending a matroid such that every feasible partition is a partition into bases (Section 7.2).

7.1 Finding an Allocation Maximizing the Social Welfare

We initialize our algorithm with an allocation that maximizes the sum of agents’ utilities.
Such an allocation can be found in polynomial time even for heterogeneous matroid
constraints.

Theorem 9. Suppose there are any n agents with additive valuations, where the bundle of
each agent i must be an independent set of a matroid M;. It is possible to find, using a
polynomial number of arithmetic operations, an allocation that maximizes the sum of utilities
among all complete feasible allocations, or decide that no complete feasible allocation exists.

Proof. The problem can be reduced to the mazimum-weight matroid intersection problem:’
given two matroids over the same base-set, (Z,Z,) and (Z,Z;), where each element of Z
has a weight, find an element of Z, N7, with a largest total weight (Edmonds (1970), state-
ment (46)). There are many polynomial-time algorithms for weighted matroid intersection.
For example, an algorithm by Frank (1981) solves the problem using O(7T|Z|?) arithmetic
operations, where T is the number of operations required by circuit-finding oracles for the
input matroids.

6. We are grateful to Joshua Grochow for the proof idea.

7. We are grateful to Jan Vondrak and Chandra Chekuri for the proof idea. A similar idea was used
by Lehmann, Lehmann, and Nisan (2001), Vondrdk (2008) and Calinescu, Chekuri, P&l, and Vondrak
(2011)[section 4.1] for approximate welfare maximization with submodular utilities.
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We construct the base set Z := N x M, where each pair (i,g) € Z corresponds to
allocating item g € M to agent ¢ € N. We construct two matroids over Z, namely M, =
(Z,1,) and My = (Z,Z;). We first describe the independent sets in both matroids, then
specify the weight function.

The first matroid, M,, is a partition matroid with m categories, where category g
corresponds to the set {(1,9),...,(n,g)}, and every category has capacity 1. Membership
in M, ensures that every item is given to at most one agent.

The second matroid, My, represents the matroid constraints of the n agents in the fair
allocation problem. For every subset S C Z, denote A;(S) := {g : (i,9) € S}, which
represents the set of items allocated to ¢ by S. Then S is in Z; iff for every agent ¢, the set
A;(S) is an independent set in M;. We show that M, is a matroid:

(i) Downward-closed: suppose S C T and T € Z,. For all i € N, S C T implies
Ai(S) € Ai(T), and T € I, implies A;(T") € Z;. Since M, is downward-closed, A;(S) € Z,.
By the definition of Z;, we conclude that S € Zp.

(ii) Augmentation property: Let S,T € 7, such that |S| < |T'|. Since |S| = 3,y [Ai(S)]
and |T| = > ,cn |Ai(T)], there must be some i € N for which |4;(S)| < |4;(T)|. Since
Ai(S), Ai(T) € Z;, the augmentation property of M, implies that there exists an item
g € A;(T)\ Ai(S) such that A;(S)U{g} € Z;. Then SU{(7,9)} € 7 and the augmentation
property holds.

Given independence oracles for the matroids M;, for all ¢ € N, one can construct an
independence oracle for My, as follows: run the independence oracle of every M; on the set
A;(S), and return ”true” if and only if all n independence oracles returned ”true”.

One can easily verify that every subset of Z that is an independent set in both M, and
M, represents a feasible allocation.

Next, define the weight function w : Z — R;. For every (i,g) € Z, let w((i,g)) =
V +vi(g), where V := 2m - max; max, v;(¢). Find a maximum-weight subset S* € Z, N Zy,.
The construction of w guarantees that S* maximizes the number of allocated items. Subject
to this, S* maximizes the total value.

If the number of allocated items is smaller than the total number of items, then we
can conclude that no complete feasible allocation exists. Otherwise, a complete feasible
allocation is found. Within complete allocations, maximizing the total value ensures that
the returned allocation maximizes social welfare. This concludes the proof. ]

7.2 Ensuring a Partition into Bases

To simplify the algorithms, we pre-process the instance to ensure that, in all feasible al-
locations, every agent receives a basis of M. Recall that the rank of a matroid M is the
cardinality of a basis of M (all bases have the same cardinality). We denote r := rank(M).
In the pre-processing step, we add to M dummy items, valued at 0 by all agents, so that
after the addition, |M| = n -r. This guarantees that, in every feasible allocation, every
bundle contains exactly 7 items, so it is a basis. To ensure that the dummy items do not
affect the set of feasible allocations, we use the free extension,® defined below.

8. We are grateful to Kevin Long for the proof idea at https://math.stackexchange.com/q/4300433.
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Definition 16. Let M = (M,Z) be a matroid with rank r. The free extension of M is a
matroid M" = (M’,Z") defined as follows (where 2™V is a new item):

M= M + 2™,
T'=7 U {I+2"V: ITeZ]|ll<r-1}.

That is: all bundles that were previously feasible remain feasible; in addition, all non-
maximal feasible bundles remain feasible when the new item is added to them.

The properties of the free extension are summarized below.
Observation 2. If M’ is the free extension of M with new item ™", then:

e All bases of M are bases of M’.

e rank(M) = rank(M’) = r.

e Given a feasible partition of M (a partition into independent sets), where some sets in
the partition are not mazimal (contain less than r items), one can construct a feasible
partition of M’ by adding x™" into some non-mazximal set.

e Given a feasible partition of M', one can construct a feasible partition of M by re-
moving x"Y from the set containing it.

o M’ is base-orderable if and only if M is base-orderable.

The first four observations are trivial. We prove the fifth one in Appendix B.

By Assumption 1, our instance admits a feasible allocation. Since any feasible bundle is
contained in a basis, the cardinality of every allocated bundle is at most r, so |[M| < n-r.
We construct a new instance by applying the free extension n - r — |M| times, getting a
matroid M" = (M',7') with |M'| = n -r. We call the n - r — | M| new items dummy items,
and let all agents value them at 0.

Observation 3. The new instance satisfies the following properties.
e All bases of M are bases of M’.

e In every feasible allocation (Yi,...,Y,) in the new instance, |Y;| =r for alli € N, so
every Y; is a basis of M'.

e For every feasible allocation (X1,...,X,) in the original instance, there is a feasible
allocation (Y1,...,Yy) in the new instance, where for all i € N, Y; contains X; plus
zero or more dummy items, so v;(X;) = vi(Y;) for alli,j € N.

e For every feasible allocation (Y1,...,Yy) in the new instance, there is a feasible allo-
cation (X1,...,X,) in the original instance, where for all i € N, Y; contains X; plus
zero or more dummy items, so all agents’ valuations to all bundles are identical.

o M’ is base-orderable if and only if M is base-orderable.
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ALGORITHM 7: [Iterated Swaps
Input: Constraints based on a base-orderable matroid M; n agents with additive valuations; A
set M of items with |M| = n - rank(M).
: Initialize: X < a complete feasible SWM allocation (by Theorem 9).
while X is not EF1 do
Find ¢, 5 € N such that agent i envies agent j by more than one item.
Find a feasible exchange bijection u : X; — Xj.
Find an item g; € X; such that v;(u(g;)) > vi(g;)-
Swap items g; and pu(g;).
end while
return the allocation X.

By the above observation, one can assume, without loss of generality, that there are
exactly n - r items, and consider only allocations in which each agent receives a basis of M.
We can now present the Iterated Swaps scheme, presented in Algorithm 7.

The algorithm starts by finding a feasible social welfare maximizing (SWM) allocation
X, using Theorem 9. As long as there exist agents 4, j that violate the EF1 condition, the
algorithm swaps a pair of items between ¢ and j, such that the utility of ¢ (the envious
agent) increases. In the next subsections we will present two settings in which Iterated
Swaps is indeed guaranteed to terminate in polynomial time with an EF1 allocation.

7.3 Three Agents with Binary Valuations

Below, we show that Iterated Swaps finds an EF1 allocation for n = 3 agents with hetero-
geneous binary valuations.

Theorem 10. Consider an instance with identical constraints based on a base-orderable
matroid M. For every three agents with heterogeneous binary valuations, the Iterated Swaps
algorithm (Algorithm 7) finds an EF1 and SWM allocation.

The algorithm uses a polynomial number of arithmetic operations and calls to an inde-
pendence oracle of M.

To prove Theorem 10 we use the following lemma.

Lemma 9. Consider a setting with binary valuations. Let X be a SWM allocation in which
agent i envies agent j. Let p: X; — X; be a feasible-exchange bijection. Then there is an
item g; € X; for which vi(g;) = vj(g;) =0 and vi(g;) = vj(g;) = 1, where gj = p(gi)-

Proof. By additivity,

Since i envies j, v;(X;) > v;(X;), so at least one term in the first sum must be larger than
the corresponding term in the second sum. So there is some g; € X; for which:

vi(1(gi)) > vigi)-

594



FAIR DI1VISION UNDER HETEROGENEOUS MATROID CONSTRAINTS

Let g; := p(g:). Since valuations are binary, v;(g;) > vi(g;) implies v;(g;) = 1 and v;(g;) = 0.
Since p is a feasible-exchange bijection, swapping g; and g; yields a feasible allocation. Since
X maximizes the sum of utilities among all feasible allocations, the swap cannot increase
the sum of utilities; therefore, we must have v;(g;) = 1 and v;(g;) = 0 too. O

We call the exchange described by Lemma 9 a smart swap.

Lemma 10. Let X be a SWM allocation where ENVY;E (i,7) > 1, and let X' be an allocation
obtained from X by a smart swap between agents i and j. Then:

(a) X' is a SWM allocation.

(b) ENVYZ, (i, 5) = ENVYY (i, ) — 2;

() vi(X}) > vi(X});

(d) ENvY,(j,i) = 0.

Proof. (a) The smart swap decreases the utility of j by v;(g;) — v;(g;) = 1, and increases
the utility of 7 by v;(g;) —vi(¢9s) = 1, and does not change the utilities of other agents. So
the total sum of utilities does not change.

(b) After the smart swap, v;(X}) = v;(X;) —vi(g;) = vi(X;) — 1, and v;(X]) = v;(X;) +
vi(gj) = vi(X;) + 1. It follows that ENVYS, (i, j) = vi(X}) —vi(X]) = vi(X;) = 1= (vi(Xi) +
1) = ENvY% (i, j) — 2.

(c) Before the swap, we had ENVY% (i,5) > 2, so v;(X;) > v;(X;) + 2. The swap
decreased the difference in utilities by 2. Therefore, after the swap, we still have v;(X j’) >
vi(X5).

(d) If we had ENVY;E,(j,z') > 0, then giving X; to j and X to i would increase the
utility of j and not decrease the utility of ¢ (by 3), contradicting SWM. O

We are now ready to prove Theorem 10. In the proof, when we mention a change in
ENVY;E (1,7) we refer to the change in the positive envy of agent i to agent j between
allocations X and X'; i.e., to ENVYY, (4, j) — ENVYY (4, j).

Proof of Theorem 10. Let X be a complete feasible SWM allocation. Let ®(-) be the fol-

lowing potential function:
(X)) =) > ENVY (4, 4).
i ji
If X is EF1, we are done. Otherwise, by Lemmas 9 and 10, there must exist a smart swap
between 4, j such that the social welfare remains unchanged, ENVYY (i, j) drops by 2 and

ENVYY (4,4) remains 0. Thus, ENVYY (i, j) + ENVY% (j, i) drops by 2. Let us next consider
the positive envy that might be added due to terms of ® that include the third agent, denote

it by k.

1. ENVY;E (i, k) cannot increase, as the smart swap increases i’s utility, while v;(X}) does
not change.

2. ENvYy (k, i) increases by at most 1: the largest possible increase in vy (X}) is 1, while
v (X%) does not change.
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3. ENVYY (K, j) increases by at most 1: the largest possible increase in vg(X %) is 1, while
v (X%) does not change.

4. ENVY% (4, k) increases by at most 1, as this is the exact decrease in vj(X %), while
vj(X}y) does not change.

We next claim that among the terms that may increase by 1 (that is, terms 2,3 and 4), no
two of them can increase simultaneously:

o ENvYY (k,7), ENVYY (j, k) cannot increase simultaneously as this would create an
envy-cycle, contradicting SWM.

e ENvYy (k,i), ENVYY (4, k) cannot increase simultaneously, as this together with the
fact that v;(X}) > v;(X;) contradicts SWM: shifting bundles along the cycle i — j —
k — i strictly increases the sum of utilities.

° ENVY;_( (k,1), ENVY;'( (k, j) cannot increase simultaneously as the sum of k’s valuations
to i’s and j's bundles is fixed, that is, vg(X;) + vk(X;) = vi(X]) + ve(X7).

We conclude that in every iteration the potential function drops by at least 1. Indeed,
ENVYY (i, §) drops by 2, ENVY% (4, ) remains 0, ENVY (i, k) does not change, and among
ENvYY (k, i), ENVYY (K, j), ENVY (4, k) only one can increase, by at most 1.

As the valuations are binary, the initial value of the potential function ® is bounded by
|M| = m. At every step it drops by at least one, so the algorithm stops after at most m
iterations.

By Lemma 8, line 4 can be executed in polynomial time. All other lines can clearly be
executed in polynomial time too. Therefore, the run-time is polynomial. O

7.4 Two Agents with Additive Valuations

The case of three agents with heterogeneous additive valuations remains open. Below, we
show that for two agents with heterogeneous additive valuations, an EF1 allocation always
exists. Suppose the agents’ valuations are v; and vy. Using the cut-and-choose algorithm,
we can reduce the problem to the case of identical valuations:

e Find an allocation that is EF1 for two agents with identical valuation v.
e Let agent 2 pick a favorite bundle (the allocation is envy-free for 2).
e Give the other bundle to agent 1 (the allocation is EF1 for 1).

It remains to show how to find an EF1 allocation for agents with identical valuations.

Biswas and Barman (2018) [Section 7 in the full version| presented an algorithm that finds

an EF1 allocation for n agents with identical valuations, with constraints based on a laminar

matroid — a special case of a BO matroid. In fact, their algorithm can be both simplified

and extended to BO matroids using our pre-processing step and the Iterated Swaps scheme.
Algorithm 7 should be adapted in the following way:
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e In line 3, the envious agent ¢ is chosen such that his current value is smallest:

i € argminv(X;).
iEN
Note that, since both the valuations and the constraints are identical, if some agent

is envious, then any agent with the smallest value is envious too, so this choice is
possible.

e In line 5, the pair of items to swap is chosen such that the value-difference is largest:

g € argmaxv(u(g;)) — v(gi)-
g:€X;

With these two choices, it can be proved that the algorithm terminates after polynomially
many iterations. The proof is similar to Theorem 4 of Biswas and Barman (2018) [pages
16-18]; for completeness, we present a stand-alone proof below. The proof is based on
several claims.

Claim 1. The smallest bundle value, minge y v(X}), does not decrease during the algorithm.

Proof. The only agent whose value decreases in each iteration is the agent j, who is envied
by 4. Since the envy is by more than one item, j’s value after the swap is still larger than
i’s value before the swap. Therefore, the globally smallest value does not decrease. O

Claim 2. If some agent i is picked as the envious agent in some iteration, then i is never
envied by more than one item in any later iteration (and therefore is not picked as the envied

agent j ).

Proof. The proof is by induction on the algorithm iterations.

The basis is the first iteration in which agent 7 is chosen as the envious agent; denote this
iteration by ¢;. i’s value starts at min;e v v(X;) and increases by at most v(u(g;)). Therefore,
if u(g;) is removed from X;, then the remaining value in X; is at most min;ey v(X;).
Therefore, ¢ is not envied by more than one item in the next iteration.

Suppose the claim holds for iterations ¢;,¢; +1,...,t; + k for some k > 0. If, in iteration
t; + k, agent 7 is again chosen as the envious agent, then the induction basis applies again,
and ¢ is not envied by more than one item in the next iteration. Otherwise, by the induction
assumption, agent ¢ is not chosen as the envied agent, so his bundle X; does not change.
By Claim 1, the smallest agent value does not decrease; therefore, ¢ is still not envied by
more than one item in the next iteration. O

Claim 3. Consider a setting with identical additive valuations v. Let X be an allocation
in which agent i envies agent j by more than one item. For any bijection p : X; — X;:

ma [0(u(gs)) — v(g1)] > v(X;)/m?.
gi€X4

Proof. Since the envy is by more than one item, the difference v(X;) —v(X;) is larger than
maxgy, e x, v(g;j), which is at least as large as v(X;)/|Xj|.
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Since v(X;) — v(Xi) = > cx, (v(1(gi)) —v(gi)), there exists at least one g; for which

v(p(gi)) —v(gi) = [v(X;) — o(X3)]/1Xil.
Combining these inequalities gives:

max v(p(g:)) —vlgi) > (v(X;)/1X;])/1Xi
gi€Xg

> v(X;)/m?. O
The next claim is a general claim about sequences of subsets of numbers.

Claim 4. Let r > 1 be a real number. Let M be a multiset of m positive real numbers. Let
Y =Y1,Ys,... be a sequence of subsets of M, such that

Zx>r-2x forallt > 1,

€Y1 z€Y:

that is, the sums of subsets in the sequence increase by a factor larger than r at each step.
Then the length of the sequence Y is at most R - (m + 1), where R = [1/logy1].?

Proof. Define a sub-sequence Z of Y, where Z; := Yg for all ¢t > 1. The condition on the
sequence Y implies that

Zx>rR-Z:L‘22-Zx forallt > 1,

ZGZt+1 $€Zt IGZt

that is, the sums of subsets in the sequence more than double at each step. This implies
that:

Z x > Zw—i—---—i—Zm forallt > 1,

:EGZt+1 TEL TEL:

so each subset Z;;1 must contain a new element of M, that is not contained in any of
Z1, ..., 2. Therefore, the length of Z is at most m + 1, so the length of Y is at most
R-(m+1). O

Theorem 11. In any setting with identical additive valuations and identical BO matroid
constraints, the Iterated Swaps algorithm with the two choices mentioned above (choosing
i € argminy v(X;) and g; € argmaxx, v(u(g;)) —v(gi)) finds an EF1 allocation in O(nm?)
iterations.

Proof. Claim 3 implies that, at each iteration, the envious agent i gains a value of at least
v(X;)/m?, which is larger than v(X;)/m?. Therefore, i’s value is multiplied by a factor
larger than r := (1 + 1/m?). By Claim 2, i’s value never decreases during the following
iterations. Applying Claim 4 to the sequence of iterations in which i is selected as the envious
agent implies that ¢ can be envious at most R - (m + 1) times, where R := [1/log, r|. Note
that ™ > 2 for all m > 2,50 1/logy 7 < m?, so R < m?. Therefore, the algorithm must
terminate after at most Rn(m + 1) = O(nm?) iterations. O

9. Note that R > 1 when » < 2 and R =1 when r > 2.
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7.5 Non Base-Orderable Matroids

The Iterated Swaps technique may fail for matroids that are not base-orderable, even for
two agents with identical binary valuations. The “weak link” is Lemma 9, as the following
example shows.

Example 2. Consider the graphical matroid on K4 — the clique on four vertices. Denote
the vertices of K4 by 1,2,3,4 and its edges by E = {12,13, 14,23, 24, 34}. The K, graphical
matroid is a matroid over the ground-set E, whose independent sets are the trees in Kjy.
Consider the two bases {12,23,34} (thick) and {24,41, 13} (thin):

2 3

1 4

The only feasible swap for 12 is with 14, and similarly the only feasible swap for 34 is with
14, so there is no feasible-exchange bijection. This shows that the graphical matroid on K
is not base-orderable.

Suppose now that the agents have identical valuations, as in the following table:

Element (edge of K4) H Value ‘

12 0
23 1
34 0
13 1
14 0
24 1

Note that, with identical valuations, all allocations are SWM. Consider the allocation in
which Alice holds the first three elements and Bob holds the last three elements. Then Alice
envies Bob, but there is no swap that increases Alice’s utility while keeping the bundles
of both agents feasible. Moreover, suppose there are two copies of K4, and in both copies
the allocation is the same as above. Then, Alice envies Bob by two items, but there is no
feasible single-item swap that can reduce her envy. Thus, although an EF1 allocation exists,
it might not be attainable by single-item swaps from an arbitrary SWM allocation. O

We have a positive result for the special case of unary valuations, in which each agent
values every item at 1 (note that the items are still different due to the constraints).

Theorem 12. Consider an instance with any number of agents, with heterogeneous matroid
constraints and with unary valuations. If there exists a complete feasible allocation (that is,
Assumption 1 holds), then there exists a complete feasible F-EF'1 allocation.
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Proof. Benabbou et al. (2021) prove that, for agents whose valuations are matroid-rank
functions, there always exists an EF'1 allocation that maximizes social welfare. When agents
have unary valuations, the social welfare of every complete feasible allocation is exactly m
(the number of items). Since a complete feasible allocation exists, the maximum attainable
social welfare is m. The agents’ feasible-valuation functions v; are matroid-rank functions.
Therefore, by Benabbou et al. (2021), there exists an F-EF1 allocation with social welfare
m. This allocation must be a complete feasible allocation. O

8. Impossibility Results

In this section we give some intuition for why previous approaches fail in the case of heteroge-
neous constraints, and provide impossibility results for settings beyond the ones considered
in this paper. All examples in this section involve two agents.

8.1 Partition Matroids, Maximum Nash Welfare

The following example shows that a maximum Nash welfare (MNW) outcome may not
be F-EF1 in settings with feasibility constraints, even under identical partition matroid
constraints and binary valuations. We note that the existence of such an example has
been mentioned by Biswas and Barman (2018) without a proof; we include it here for
completeness.

Example 3. Consider the setting and allocation illustrated in Table 2. There are two
agents and two categories. Category 1 has 4 items and capacity 2 for both agents; Category
2 has 6 items and capacity 3 for both agents. From the items in C?, Alice gets value 0 and
Bob gets value 3 in any feasible allocation. From the items in C', Alice and Bob together
get a total value of 2; if Alice gets 0 and Bob gets 2, then the Nash welfare is 0; if Alice
gets 1 and Bob gets 1, then the Nash welfare is 1 - (1 4+ 3) = 4; if Alice gets 2 and Bob
gets 0, then the Nash welfare is 2 - (0 + 3) = 6. Therefore, the maximum Nash welfare is
6, attained by the allocation marked by asterisks in Table 2. This allocation is not EF1,
since vp(X4) = 5 so Bob envies Alice by more than one item (note that F-EF1 and EF1
are equivalent in this case, since both agents have the same constraints).

Category Cct Cc?

Items w1, W2 | T1,T2 || Y1---,Y3 | 21...,23
VA 1* 0 0* 0

VB 1 0* 1 1*

Table 2: An example of agents with identical partition matroid constraints and binary valuations
where MNW does not imply EF1.

Note that Benabbou et al. (2021) prove that MNW always implies EF1 for submodular
valuations with binary marginals. However, they consider clean allocations, where items
with 0 marginal value are not allocated. In contrast, we consider complete allocations,
in which all items must be allocated. Indeed, if we “clean” the allocation in Table 2 by
having Alice dispose of the three items she does not desire in category C?, the allocation
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becomes EF1 while remaining MNW. The same reasoning (and same example) applies also
to the prioritized egalitarian mechanism introduced by Babaioff et al. (2021). Specifically,
this mechanism gives a clean (“non-redundant” in their terminology) Lorentz-dominating
allocation, which is shown to be EF1 (and even EFX, cf. Subsection 8.4). However, the
obtained allocation is not complete.

8.2 Partition Matroids, Heterogeneous Categories

The following example shows that if agents have partition matroid constraints, where the
partitions of the items into categories is not the same, then an F-EF1 allocation might not
exist, even if the valuations are identical and binary.

Example 4 (Heterogeneous categories, no F-EF1). Consider a setting with four items and
two agents with identical binary valuations:

Items 1,22 | Y1,Y2

V4 = VB 1 0

Suppose that

e Alice’s partition has two categories, C} = {21,191} and C% = {w2,v2}, both with
capacity 1;

e Bob’s partition has three categories: Ch = {1} with capacity 1, C% = {x2} with
capacity 1, and C% = {y1,y2} with capacity 0.

There is a unique feasible allocation, in which Bob gets z1,z2 and Alice gets y1,yo.
Bob’s bundle is feasible for Alice, and Alice envies Bob by more than one item.

Remark 1. Example 4 has two items worth 0 to both agents. What happens if we do not
allow such worthless items?

If we replace these items with two items worth e to both agents, for some € € (0,1/2),
then the same arguments show that an F-EF1 allocation does not exist (we used 0 to show
impossibility for binary valuations).

On the other hand, if we allow only items that are worth 1 to all agents (that is, we
require unary valuations), then an F-EF1 allocation always exists by Theorem 12.

Remark 2. Example 4 can be modified to avoid categories with zero capacities:

Items TlyevesXd | Y1y---,Y4

VA = UB 1 0

e Alice’s partition has four categories, C’Z‘ = {z;,y;} for j € [4], with capacity 1 each;

e Bob’s partition has five categories: C]J_;; = {z;} for j € [4] with capacity 1 each, and
C% = {y1,...,ya} with capacity 1.

In every complete feasible allocation, Bob gets at most one y; item, so Alice must get at
least three y; items, so she can get at most one z; item, so Bob must get at least three x;
items. Now, 04(X4) < 1 while 04(Xpg) > 3 (since the subset of Xp containing the three
x; items is feasible for Alice). Hence, Alice F-envies Bob by more than one item.
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8.3 Non-Existence of EF1 for Non-Matroid Constraints

In this subsection we consider natural classes of set-systems that are not matroidal. We show
that, when the constraints are based on such set-systems, a complete EF1 allocation might
not exist, even when all agents have identical constraints and identical binary valuations.

Definition 17. Let Z C 2M be a set-system (a set of subsets) of M. Two elements x,y € M
are called complementary for T if, for every partition of M into two subsets X1, Xo € T
(with X7 N Xo =0 and X; U Xo = M), either {z,y} C X; or {z,y} C Xo.

Example 5. Let M; = {1,2,3} and Z; = {0,{1},{2},{3},{1,3}}. There is only one
partition of M into two subsets in Z;, namely, {2} and {1,3}. This shows that 1 and 3 are
complementary elements.

As another example, let My = {1,2,3,4} and Zo = {0, {1}, {2}, {3}, {4}, {1,3},{2,4}}.
Here, 1 and 3 are complementary elements, and so are 2 and 4.

Proposition 1. Suppose there are two agents with identical constraints represented by
some I C 2M | If there are complementary items for I, then there exists a binary valuation
function v : M — {0,1} such that, when v = vy = v, there is no complete feasible EF1
allocation.

Proof. Define v such that both agents value both complementary items at 1 and the other
items at 0. In every feasible allocation, one agent gets none of the complementary items,
and thus envies the other agent who gets both these items, and the envy is by two items. [

There are several natural constraints with complementary items.

Example 6 (Matroid-intersection constraints, matching constraints, conflict-graph con-
straints). Consider the allocation of course seats among students, where the seats are cate-
gorized both by their time and by their subject, and a student should get at most a single
seat per time and at most a single seat per subject. Suppose there are two subjects, physics
and chemistry; each of them is given in two time-slots, morning and evening. The items
(physics,morning) and (chemistry,evening) are complementary, since in the (unique) parti-
tion of the four seats into two feasible subsets, these two seats appear together. In fact,
if we set 1 = (physics,morning), 2 = (chemistry,morning), 3 = (chemistry,evening), 4 =
(physics,evening), then the set of feasible subsets is exactly the set Z, from Example 5. By
Proposition 1, an EF1 allocation may not exist.

In general, the above constraints can be represented by an intersection of two partition
matroids: one matroid (M,Z;) partitions the seats into two categories by their time, and
another matroid (M, Z,) partitions them by their subject, and the capacities of all categories
are 1. The feasible bundles are the bundles in Z; N Z;.

The above constraints can also be represented by the set of matchings in the bipar-
tite graph in Figure 1, where the items are the edges. Matching constraints in bipartite
graphs can be formed as an intersection of two partition matroids: one partitions the edges
into categories based on their leftmost endpoint, and the other partitions the edges into
categories based on their rightmost endpoints, and all categories in both matroids have a
capacity of 1.
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evening

chemistry

morning

physics

Figure 1: Matroid intersection graph

4 3

1 2

Figure 2: Conflict graph

The same constraints can be represented as conflict-graph constraints, recently studied
by Hummel and Hetland (2022a). Suppose the items are the vertices of the graph shown in
Figure 2. Edges denote conflicts, and the feasible sets are the set of non-adjacent vertices.
Two diagonally-opposite vertices are complementary, so by Proposition 1 an EF1 allocation
may not exist.

Example 7 (Budget constraints). Budget constraints were recently studied by Wu et al.
(2021), Gan et al. (2021). Suppose there is one item 2 with a cost of 20, and two items 1,3
with a cost of 10 each. There are two agents with budget 20. The set of feasible subsets
is exactly the set Z; from Example 5. The only complete feasible partition is to {2} and
{1,3}. The items 1, 3 are complementary, so by Proposition 1 an EF1 allocation might not
exist.

Note that the same set Z; can be represented as an intersection of two partition matroids
(one with categories {1,2} and {3} and one with categories {1} and {2,3}, both with
capacity 1), or as the set of matchings in a graph (the graph of Figure 1 with edge 4
removed), or using a conflict graph (the graph of Figure 2 with vertex 4 removed).

Remark 3. If (M,Z) is a matroid, and there is at least one partition of M into two
independent sets, then there are no complementary items for Z. This follows from the
symmetric basis exchange property (Brualdi, 1969).

The opposite is not necessarily true. For example, suppose the elements of M are
arranged on a line and Z contains all the connected subsets along the line. This constraint
is not a matroid, since it is not downward-closed. But it has no complementary items.
Indeed, an EF1 allocation exists for any number of agents with binary valuations (Bilo
et al., 2018).

As another example, consider a budget constraint with a budget of 7, and suppose
there are four items with costs 1,2, 3,4. This constraint is downward-closed, but it is not a
matroid, since there are maximal feasible sets of different cardinalities (1,2,4 and 3,4). But
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it has no complementary items: 1 and 2 are separated by the feasible partition {1, 3}, {2,4};
3 is separated from the other items by the feasible partition {3}, {1,2,4}; and 4 is separated
from the other items by the feasible partition {4}, {1, 2, 3}.

Therefore, characterizing the constraints for which an EF1 allocation is guaranteed to
exist remains an open problem.

8.4 Non-Existence of EFX, Uniform Matroids

An envy-free up to any good (EFX) allocation is a feasible allocation X where for every
pair of agents 1, j, for every good ¢ in j’s bundle, v;(X;) > v;(X; \ {g}). Clearly, EFX is
stronger than EF1. EFX has been recently shown to exist in the unconstrained settings for
up to 3 agents with additive valuations (Chaudhury, Garg, & Mehlhorn, 2020). However,
under constrained settings an EFX allocation may not exist even in the simple setting of
two agents with identical uniform matroid constraints and identical binary valuations.

Example 8. There are four items and two agents with an identical valuation, v(z1) =
v(xg) = v(zg) = 0 and v(z4) = 1. The capacity of both agents is 2. In every complete
feasible allocation (i.e., allocating 2 items to each agent), the agent who does not get x4 is
envious beyond EFX.

9. Conclusions and Future Directions

We have identified several sub-domains of the fair allocation problem, in which a complete
and feasible EF1 allocation is guaranteed to exist. Each sub-domain represents a limitation
on either the number of agents, or the type of allowed valuations, or the type of allowed
constraints. At the same time, we have identified several sub-domains in which a complete
and feasible EF'1 allocation might not exist. Our results do not provide a complete charac-
terization: some sub-domains are covered neither by our positive results nor by our negative
results. This suggests several open questions.

1. Consider a setting with n agents with additive heterogeneous valuations, partition
matroids with heterogeneous capacities, and three or more categories. Does an EF1
allocation exist? (Section 3 handles at most two categories).

2. Consider a setting with n agents with additive identical valuations. Is there a class of
matroids, besides partition matroids with the same categories (Section 4), for which
an EF1 allocation exists even when the constraints are heterogeneous?

3. Consider a setting with n agents with binary valuations, partition matroids with
heterogeneous capacities, and the capacities may be two or more. Does an EF1 and
Pareto-efficient allocation exist? (Section 5.2 handles capacities in {0,1}).

4. Consider a setting with three or more agents with heterogeneous additive valuations
and partition matroids with heterogeneous capacities. Does an EF1 allocation exist?
(Section 6 handles two agents).

5. Consider a setting with four or more agents with binary valuations and BO matroid
constraints, or even three agents with binary valuations and general matroid con-
straints, or three agents with additive valuations and BO matroid constraints. Does
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an EF1 allocation exist? (Section 7 requires three agents, binary valuations, and BO
matroids).

Another interesting direction is extending our results to allocation of chores (items with
negative utilities) in addition to goods.
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Appendix A. Alternative Definitions of Feasible Fairness

Recall the definition of F-EF1 from Section 2.2:

An allocation X is F-EF1 iff for every i,j € N, there exists a subset Z’ C X;
with ‘ZI| S 1, such that UZ(XZ) Z ﬁl(Xj \ ZI)

This definition compares agent i’s bundle to X after first removing an item from X, and
then considering the most valuable feasible subset within the remainder. The condition can
be written as follows:

v (X;) > min max vi(Y;).
Z/ng,|Z/|§1 }/}/EFEASZ'(X]'\Z/)
Alternatively, we could first consider a feasible subset of X}, and then remove an item.
This yields the following definition:

Definition 18 (weak F-EF1). An allocation X is weak F-EF1 iff for every i,j € N, for any
Y; € FEAS;(X), there exists a subset Z C Y; with [Z] < 1, such that v;(X;) > v(Y;\ Z2).
In other words:
(X;) > i (Y \ Z).
XD 2 By sl )
The definition makes sense for downward-closed constraints, since then the fact that Y;

is feasible implies that Y; \ Z is feasible too. The following lemma justifies the adjective
“weak”.
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Lemma 11. For downward-closed constraints,
(a) every F-EF1 allocation is weak F-EF1.
(b) Not every weak F-EF1 allocation is F-EF1.

Proof. (a) If X is F-EF1, there exists Z’ C X with |Z’| < 1, such that v;(X;) > 0;(X; \ Z').

Equivalently, v;(X;) > v;(Y]) for any Y] € FEAS;(X; \ Z').

Let Y; be any set in FEAS;(X;). Let Z := Z'NYj. Note that Z C Y and |Z] < 1.
Moreover, Y; \ Z C X; \ Z’ since Y; C X;. Moreover, Y; \ Z is feasible for ¢, since Y; is
feasible for ¢ and the constraints are downward-closed. Therefore, Y; \ Z € FEAS;(X; \ Z'),
so v;(X;) > vi(Y; \ Z), satisfying the requirement for weak F-EF1.

(b) Consider a uniform matroid and two agents, with two items worth 1 to both agents,
and let k, = 1,kz = 2. Let X be the allocation giving both items to Bob. This allocation
is weak F-EF1: every subset Yp € FEAS; (X p) contains a single object, and once this object
is removed, Alice does not envy.

However, X is not F-EF1. If any item is removed from Bob’s bundle, then the remaining
bundle contains a single item, it is feasible for Alice, and Alice values it more than her own
(empty) bundle. Therefore, Alice F-envies Bob.

O

All algorithms in this paper return F-EF1 allocations, thus weak F-EF1 as well.

Conversely, all impossibility results in this paper (see Section 8) continue to hold also
with respect to weak F-EF1 too: this is obvious in Section 8.1, Section 8.3 and Section
8.4 since they use identical constraints. With identical constraints, all bundles in a feasible
allocation are feasible for all agents, so all three fairness notions (EF1, F-EF1 and weak
F-EF1) coincide.

In Section 8.2 (which uses heterogeneous partition-matroid constraints), there is a unique
feasible allocation, in which Bob gets two items worth 1 for both agents, and Alice gets two
items worth 0 for both agents. Bob’s bundle is feasible for Alice, and she envies Bob even
after one item is removed from it, so the allocation is not weak F-EF1.

An even weaker definition of feasible fairness presumes that an agent can only envy a
feasible bundle. That is, if the bundle of agent j is not feasible for agent ¢, then ¢ does not
envy j at all. This leads to the following variant of EF1:

Definition 19 (very-weak F-EF1). An allocation X is very-weak F-EF1 iff for every i, j €
N, either X is not feasible for agent i, or there exists a subset Z C X; with |Z| < 1, such
that UZ(XZ) > Ui(Xj \ Z).

Clearly, every weak F-EF1 allocation is very-weak F-EF1, so all our positive results are
valid for very-weak F-EF1. Our negative results, too, are valid for very-weak F-EF1. The
reasons are exactly the same as for weak F-EF1: in Sections 8.1, 8.3 and 8.4 the constraints
are identical so all variants of EF1 are equivalent; in Section 8.2, in the unique feasible
allocation, Bob’s bundle is feasible for Alice, and she envies Bob by more than one item, so
the allocation is not very-weak F-EF1.

Appendix B. Appendix for Section 7

Lemma 12. Let M = (M,Z) be a matroid, M' = (M',T') be its free extension with new
item ™. Then M’ is base-orderable if and only if M is base-orderable.
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Proof. If M’ is base-orderable, then every two bases of M’ have a feasible-exchange bijec-
tion. Since all bases of M are bases of M’, the same holds for M too.

Conversely, suppose M is base-orderable, and let I’, J' € Z' be two bases of M’'. We
consider several cases.

Case 1: Both I’ and J’ do not contain z""V. Then both are bases of M, so they have
a feasible-exchange bijection.

Case 2: I' contains £V while J’ does not. So I' = I + 2"V, where I € Z, and J' is a
basis of M. Let I + y be any basis of M that contains I, where y € M. Since M is BO,
there is a feasible-exchange bijection p : I +y — J’. Define a bijection u' : I + 2"V — J’
by:

W (z) = p(x) forz €I

We now show that y' is a feasible-exchange bijection.
e For all z € I, we have
(I +a™) =z + /() = (I — 2+ p(a)) + 2",

Since p is a feasible-exchange bijection, (I4+y)—xz+pu(z) € Z. By downward-closedness,
I — 2+ p(x) € Z. By definition of the free extension, (I — x + p(z)) + 2"V € 7'
Additionally,

J =) +x=J —p(x) + =
Since p is a feasible-exchange bijection, the latter set is in Z, which is contained in 7.
e For x = 2™V, we have
(L +2") — 2" 4 1 (@) = T+ pu(y) = (I +) — y + n(y).

Since p is a feasible-exchange bijection, the latter set is in Z, which is contained in Z.
Additionally,

Jl _ M/(xnew) _|_ l,new — Jl _ M(y) + :L,new.

Since p is a feasible-exchange bijection, J' — u(y) + y € Z. By downward-closedness,
J' — u(y) € Z. By definition of the free extension, (J' — u(y)) + 2™V € Z'.

Therefore, a feasible-exchange bijection exists for I’ and J'.
Case 3: J' contains 2™V while I’ is a basis of M. This case is analogous to Case 2.
Case 4: both I' and J’ contain z"°V. Similarly to Case 2, we write I’ = I + 2™V and
find a basis I +y of M. Let u: I +y — J' be a feasible-exchange bijection guaranteed by
Case 3 above, between the bases I +y and J' of M’. Now, a bijection y' : I + 2"V — J’
can be defined exactly as in Case 2. O
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